

Light-Overtones Interaction with Guided Wave Optics Scheme

Aviad Katiyi

Supervisor: Dr. Alina Karabchevsky

Electro-optical Engineering Unit Ben-Gurion University of the Negev, Beer-Sheva, Israel

June 13, 2017

Overview

- Project aim
 - State of the art
- 2 Methodology
 - Guided wave optics
 - Tapered architectures
 - Overtone spectroscopy
 - Tapered waveguide design
- 3 Proof-of-principle experiments
 - Aromatic amines experiment
 - Ovarian cancer experiment
- 4 Conclusion
- 5 Future directions
- 6 Summary

Project aim

■ The project focuses on exploiting the near-infrared absorption enhancement by overtones with guided wave architectures due to enhanced light-matter interaction.

Figure 1: The concept.

Mid-infrared spectroscopy

- Mid-infrared (Mid-IR) spectroscopy is powerful technique for molecular detection.
- The absorption spectra of organic molecules, in this region, are directly linked to the fundamental vibrational modes.
- A fundamental vibrational transitions of organic molecules are typically in range of 3-20 μm or in wavenumbers it is ~3300-500 cm⁻¹.
- Infrared absorption spectroscopy exhibits a great potential in sensing and molecular dete

Figure 2: Calculated MIR spectrum of N-Methylaniline molecule using Spartan computational chemistry software

Mid-infrared spectroscopy

- Theoretically, spectroscopic transitions occur at absorption lines with zero frequency width.
- Absorption lines with finite widths and characteristic lineshape functions, directly related to the absorption coefficient and dielectric function of the molecule.
- Well defined absorption band in mid-ir region are related to molecular fingerprints due to the large absorption cross-section.
- Despite their potential, the fundamental vibrations of organic molecules appear in mid-infrared region where bulky and expensive equipment is needed.

Our approach

Quick look into the lab:

- Our approach is the investigation of absorption by overtones in the near-infrared region using guided wave optics.
- Telecommunication region has affordable equipment due to the technological maturity at this window.
- The use of chip allows for light-matter interaction in a controllable manner harnessing the miniaturization and portability.

Figure 3: (a) The experimental set-up; (b) Examined chip.

Guidance principle

■ In a guided wave optics regime, the guiding layer has a higher index than the surroundings which allows the wave propagates due to total internal reflection.

$$\theta_c = \sin^{-1}(\frac{n_{\text{subs}}}{n_{\text{gl}}})\tag{1}$$

$$n_{\rm gl} > n_{\rm subs} \ge n_{\rm sups}$$
 (2)

$$\beta_m = k n_{\rm gl} \cdot \sin(\phi_2) \tag{3}$$

Guidance criterion

■ We solve the wave equation to find the (a) guiding modes, (b) propagation constants and (c) effective indices.

$$(\nabla^2 + \beta^2)E(x, y) = 0 \tag{4}$$

$E_{y}(x)$	Domain
$Ae^{-q(x-d_g)}$ $B\cos(hx) + C\sin(hx)$ De^{-px}	$d_g \le x \le \infty$ $0 \le x \le d_g$ $-\infty \le x \le 0$

■ For guided mode, the effective index of the mode needs to follow the criterion:

$$n_{\text{subs}} \le n_{eff} \le n_{\text{gl}}$$
 $n_{eff} = \beta_m/k$ (5)

Eigenfunctions

Figure 4: (a) Slab waveguide. (b) Possible modes in a slab waveguide¹.

■ The part of the mode which propagates beyond the guiding layer is named the evanescent field. This field can interact with the surrounding within penetration depth interval.

¹Robert G. Hunsperger, "Integrated Optics"

Evanescent field

The evanescent field is the fraction of power which propagates beyond the guiding layer and defines the FoM.

FoM =
$$\eta_{\text{evanes}} = \frac{P_{\text{evanes}}}{P_{\text{total}}} = \frac{\int_{\text{medium}} SdA}{\int_{-\infty}^{\infty} SdA}$$
 (6)

$$S = \frac{1}{2} \Re \{E \times H^*\} \tag{7}$$

S - Poynting vector

P - Power

E - Electric field

H - Magnetic field

R - Real part

A - Area

Waveguide architectures

- The FoM of common waveguide architectures were studied.
 - A. Katiyi and A. Karabchevsky, Journal of Lightwave Technology. 2017;35(14):1-7

Figure 5: (Top) Common single mode waveguide architectures with (Bottom) normalized electric field amplitude colormaps.

Evanescent field in single mode waveguide

■ With single-mode operation, the evanescent field is too small for sensing.

Table 1: Fraction of the power carried by the modes of SM waveguides, width of W, embedded in mixture with ratio 1:3 of NMA:Hexane at 1.5 μm .

Waveguide	quasi-TE		quasi-TM	
type	$\eta_{ m core}$	$\eta_{ m evan}$	$\eta_{ m core}$	$\eta_{ m evan}$
Ridge	0.868213	0.0868	0.858926	0.094387
Slab	0.896623	0.050775	0.88289	0.056531
Rib	0.991583	0.004672	0.992465	0.006981
Diffused	0.99819	0.001783	0.998398	0.001603

 Downscaling the physical dimensions of the guiding layer results in increased evanescent field and increased absorption.

Evanescent field in squeeze waveguide

Table 2: Fraction of power carried by the modes at half width of SM waveguides, width of W/2, embedded in molecular mixture at $1.5 \ \mu m$.

Waveguide		
type	$\eta_{ m core}$	$\eta_{ m evan}$
Ridge	0.598454	0.323221
Slab	0.883412	0.056531
Rib	0.978077	0.011161
Microfiber	0.67076	0.329247

- The downscaling the physical dimensions of the guiding increases the FoM, as compared with the values summarized in the previous table.
- Ridge waveguide and microfiber show the highest FoM values, which is more than 30%.

Modes in squeeze waveguide

A. Katiyi and A. Karabchevsky, Journal of Lightwave Technology. 2017;35(14):1-7

Figure 6: Half width of SM waveguides, width of W/2, embedded in the mixture ratio of 1:3 NMA in Hexane: (a) slab waveguide, (b) microfiber, (c) ridge waveguide, and (d) rib waveguide.

Figure 7: Cross-section of the evanescent field of thin waveguide compared to the monomode waveguides embedded in the mixture. (a) Slab waveguide, (b) Si_3N_4 ridge waveguide on silica, and (c) silica microfiber.

Tapered waveguide architectures

 Tapered ridge waveguide and tapered fiber architectures allow for the enhanced evanescent light-molecule interaction.

Figure 8: Tapered waveguide architectures: (a) tapered ridge waveguide. (b) microfiber.

Tapered fiber

- In microfiber, the core is too narrow to guide light and the cladding became the guiding medium.
- We investigated the influence of microfiber radii on the mode shape.

Figure 9: Schematic cross-section of the tapered fiber and the illustration of the propagating mode.

Evanescent field in microfiber

A. Karabchevsky, A. Katiyi, et. al., under review by Light: Science & Applications.

Figure 10: Numerical modelling of microfiber embedded in mixture ratio 1:3 of NMA:Hexane at 1.5 μm with various radii using Comsol Multiphysics.

Vibration overtones

The principle of vibration mechanism

- Each molecule can have 5 types of energy: translational energy, rotational energy, vibrational energy, electronic energy and spin energy.
- Illumination of a molecule in IR spectrum results the molecule to vibrate.
- Each molecule can vibrate in different stretching and bending modes which appear as absorption bands in the IR region.

Figure 11: Different vibration modes of H_2O molecule and its excitation frequencies in wavenumber cm⁻¹.

Molecule as an anharmonic oscillator

- Molecular vibration motion is an anharmonic oscillator.
- Anharmonic oscillator energy levels are approximated by Morse potential function.

$$V = D_e [1 - e^{-a(r - r_e)}]^2$$
 (8)

- The frequency which leads to the transition from v=0 to v=1 calls the fundamental frequency.
- The frequencies which result transitions of Av>1 call overtones.

Figure 12: Morse potential function for unharmonic vibration compared to harmonic vibration.

Probing molecules

- Amine, derivative of Ammonia, is widely used in biology and medicine research.
- We study the amine N-H bond in aromatics amines: Aniline and a derivative of Aniline -N-Methylaniline (NMA).
- Mixtures of NMA with Hexane were chosen for checking the ability to distinguish between the different concentrations absorption.

Figure 13: Molecule chemical formula: (a) Aniline $C_6H_5NH_2$ (b) N-Methylaniline $C_6H_5NH(CH_3)$ (c) Ammonia NH_3 .

Aromatic amines vibration mode

- Aromatic amines have vibrations mode due to C-H and N-H bonds.
- Aniline C-H first and second overtones are at 1.685 μm and 1.143 μm , respectively. N-H first overtones is at 1.507 μm^2 .
- NMA C-H first and second overtones are at 1.683 μm and 1.141 μm , respectively. N-H first overtone is at 1.497 μm .

Figure 14: The absorption bands of (a) N-Methylaniline and (b) Aniline

²S. Shaji and T. Rasheed, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 57, 337-347 (2001).

Metarials dispersion

- The extinction coefficient κ was measured by using a UV/VIS/NIR spectrophotometer.
- Kramers-Kronig relation was used to calculate the complex refractive index of the samples from the measured κ .

$$\widetilde{n} = n + j\kappa \tag{9}$$

$$n(\omega) - 1 = \frac{2}{\pi} \mathcal{P} \int_0^\infty \frac{\omega' \kappa(\omega')}{\omega'^2 - \omega^2} d\omega'$$
 (10)

$$\kappa(\omega) = -\frac{2\omega}{\pi} \mathcal{P} \int_0^\infty \frac{n(\omega') - 1}{\omega'^2 - \omega^2} d\omega'$$
 (11)

Metarials dispersion

A. Katiyi and A. Karabchevsky, Journal of Lightwave Technology. 2017;35(14):1-7

Figure 15: Dispersion of (a) Hexane, (b) ratio 1:3 of NMA:Hexane, (c) ratio 2:3 of NMA:Hexane and (d) pure NMA calculated using KK relation.

Tapered waveguide design

- Tapered ridge waveguide was chosen due to its robustness and inertia to environmental changes.
- \blacksquare Silicon nitride Si₃N₄ was chosen to the guiding layer.
- The guiding layer covers with 1 μm of silica SiO₂, except for the sensing region.

Figure 16: Schematic of the ridge waveguide for the project.

Single mode region

- Single-mode regions were chosen for the input and the output of the waveguide. It allows for easy coupling and easy light collection.
- The fabrication process results guiding layer height of 400 nm.
- The calculated width for SM region was 700 nm.

Figure 17: Normalized electric field amplitude. (a) Fundamental TE and (b) fundamental TM in SM ridge waveguide.

Transition region

- There are few tapering architectures: linear, hyperbolic, parabolic and S-type.
- The tapering region needs to be adiabatic to decrease the scattering losses.
- The optimal shape for the tapering is S-shape with a length of 50 μm .

Figure 18: Taper region shapes: parabolic, S-type, hyperbolic and linear.

Sensing area

- The thin region, where the evanescent field increases, is named the sensing area.
- The evanescent field was calculated for NMA and ratio 1:3 of NMA:hexane for wavelengths of 1-1.7 μm.
- The calculated width for the sensing area was 350 nm.

Figure 19: Absorption for different samples with 350 nm width of the sensing region.

Sensing area propagation losses

The sensing region was simulated with various lengths to calculate the propagation losses by using Lumerical.

Figure 20: Propagation losses with different guiding layer widths at $1.5 \,\mu m$: (a) 350 nm (b) 400 nm

Thinner sensing layer increases the propagation losses and causes the power to leak which limits the variety of samples that can be checked.

Aromatic amines experiment

- Broadband laser source was coupled into the waveguide by single-mode fiber.
- The fiber holds with a piezo-electric stage for precise adjustment of the fiber.
- The output signal was collected by multi-mode fiber into an optical spectrum analyzer.

Figure 21: Schematic of the experimental set-up.

Aromatic amines experiment

- We investigated the overtone absorption of aromatic amines using a rib silicon waveguide.
- The samples were Aniline, NMA and mixtures with ratio 1:3 and 2:3 of NMA:Hex with volume of 3 μ L.

Figure 22: (a) Silicon rib waveguide used in the experiment. (b) Cross section of the rib waveguide by SEM.

Results

- The experimental results clearly show the ability to distinguish between the mixtures and between NMA and Aniline.
 - A. Katiyi and A. Karabchevsky, Journal of Lightwave Technology. 2017;35(14):1-7

Figure 23: The transmittance spectra of different samples on silicon rib waveguide.

Ovarian cancer experiment

- The experiment was investigating of the spectra changes before and after treatment in ovarian cancer cells.
- The fiber was tapered to approximately $2.5 \mu m$ diameter to increase the evanescent field fraction. The fraction is approximately 8-15% due to fabrication tolerance.

Figure 24: Ovarian cancer experiment. (a) Schematic of the experimental set-up. (b) Microfiber sensing device used in the experiment.

Results

■ The experimental results clearly show a difference in the transmittance spectra before and after treatment of 24hr.

Figure 25: Normalised transmittance: (a) With time difference of 30 sec. (b) Before and after treatment of 24hr.

Conclusion

- We study guided wave architectures for enhanced molecular overtones absorption spectroscopy.
- We showed that tapered structures exhibit an increased evanescent field.
- We investigated tapered structures for overtone absorption in the near-infrared.
- The molecular fingerprints of probe molecules from their overtone absorption spectra were successfully demonstrated with rib silicon waveguides in near-infrared.
- We showed a difference in the transmittance spectra in ovarian cancer before and after treatment of 24hr using microfiber.

Future directions

- Investigate the overtone absorption in the rib waveguide.
- Investigate the difference in the transmittance spectra in ovarian cancer before and after treatment of 24hr.
- Fabricate and investigate the tapered ridge waveguide structure.
- Investigate waveguide with long sensing area for increased absorption.

Summary

Journal articles

- A. Katiyi and A. Karabchevsky, "Figure of merit of all-dielectric waveguide structures for absorption overtone spectroscopy", Journal of Lightwave Technology, 35(14):1-7 (2017).
- [2] A. Karabchevsky, A. Katiyi, M. I. M. Abdul Khudus and A. V. Kavokin, "Tuning the near-infrared absorption of aromatic amines with photonic microfibers sculptured by electronegative mediators gold nanoparticles", under review by Light: Science & Applications.
- [3] A. Katiyi, B. Hadad and A. Karabchevsky, "Broadband Near-Infrared Spectrometer Using Si Nanostrip Rib-Waveguide for Label-Free On-Chip Chemical Sensing", *in Preparation*.

Conference papers

- A. Katiyi and A. Karabchevsky, "Nano-tapers: squeezing light in a dielectric nano-guide for overtone spectroscopy", "Metanano 2016", Anapa, Russia, 5 - 9 September 2016. Invited talk.
- [2] A. Katiyi, B. Hadad and A. Karabchevsky, "Silicone Waveguides for Broadband overtone spectroscopy of N-Methylamine and Aniline in near-infrared", OASIS6, Tel Aviv, Israel 27-28 Feb 2017.