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• By far, most of the optical fibers in use today, depending on Total Internal 
Reflection for guiding light. 

• Using this phenomenon as the physics basis for the fiber, force the need for core 
and cladding which have refractive indices. 

• In turn the refractive indices, contribute to the propagation loss in the fiber:

• Material absorption

• Radiation loss – scattering, dispersion, etc.

• The possibility of other mechanism, was first pointed out by Yeh et al [1]  -
Bragg Fiber

https://community.fs.com/blog/the-advantages-and-disadvantages-of-optical-fibers.html
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• Bragg fiber is leaning on Bragg reflection phenomenon in a cylindrical fiber to 
obtain lossless confined propagation in a core with a lower refractive index than 
that of the cladding medium.

• Because Bragg fiber and conventional fibers utilized different
guiding mechanisms, we opening many possibilities difficult to
achieve otherwise:

• Use of low refractive index (even air) as the propagation medium,
giving rise to low propagation losses, in terms of material absorption,
scattering, dispersion, etc. 

• Bragg fiber modes are truly single mode (if chosen correctly)

• Elimination of undesirable polarization dependent 

Yeh, P., Yariv, A., & Maron, E. (1978). THEORY OF BRAGG FIBER. J Opt Soc Am, 68(9), 1196–1201.
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• Optical dielectric waveguides with slab configuration, like fibers, require 
the index of refraction of the inner layer to exceed that of the bounding 
media (identical to fibers)

• In contrast, Bragg configuration can support lossless propagation in a low 
index slab – providing that the bounding media are periodic.

• The periodic pattern constrain the modes (for most) in the slab, as we will 
show in the following analysis.

• We will start the analysis for one side Bragg formation, and then expand it 
for 2-side Bragg formation.

Yeh, P., & Yariv, A. (1976). Bragg reflection waveguides. Optics Communications, 19(3), 427-430.
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• Let's consider the indices of refraction:

𝑛𝑎 < 𝑛𝑔 < 𝑛1, 𝑛2

• Where 𝑛𝑎 is the free space index, 𝑛𝑔 is the slab index and 𝑛1, 𝑛2
are the periodic Bragg structure indices.

• To show the possibility of guiding modes in this structure, we will focus
our discussion on TE modes. For this transverse mode  the only field
components are 𝑬𝒚, 𝑯𝒙 and 𝑯𝒛.

• Each of this fields, say 𝐸𝑦 satisfied the wave equation (with 𝑒𝑖𝜔𝑡 dependence):

∇𝑡
2𝜓 +

𝜔2

𝑐2
𝑛2 𝑥 𝜓 = 0

𝜕2𝐸𝑦

𝜕𝑥2
+ 
𝜕2𝐸𝑦

𝜕𝑧2
+

𝜔2

𝑐2
𝑛2(𝑥)𝐸𝑦 = 0

• 𝐸𝑦 is a propagating wave in 𝑧 direction, so: 𝐸𝑦 = 𝐸(𝑥) ⋅ 𝑒𝑖𝛽𝑧

𝑛2 𝑛1𝑛𝑔

𝑛𝑎

𝑛2 𝑛1 𝑛2 𝑛1 𝑛2 𝑛1

← 𝚲 →

𝒂
𝒃

(Wavefunction oscillates in time with a well-
defined constant angular frequency 𝜔) 
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• The wave equation become:

𝜕2𝐸(𝑥)

𝜕𝑥2
+

𝜔2

𝑐2
𝑛2 𝑥 − 𝛽2 𝐸 𝑥 = 0

• We can choose our solution, as long it fits our derivative equation, so
we take the solution in the form:

𝐸 𝑥 = ൞

1 exp 𝑞𝑎 𝑥 + 𝑡 𝑥 < −𝑡

2 𝑐1 cos 𝑘𝑔𝑥 + 𝑐2 sin 𝑘𝑔𝑥 − 𝑡 ≤ 𝑥 < 0

3 𝐸𝐾 𝑥 ⋅ exp 𝑖𝐾𝑥 𝑥 ≥ 0

• Where:

𝑞𝑎 = 𝛽2 −
𝜔

𝑐
𝑛𝑎

2

, 𝑘𝑔 =
𝜔

𝑐
𝑛𝑔

2

− 𝛽2

𝑛2 𝑛1𝑛𝑔

𝑛𝑎

𝑛2 𝑛1 𝑛2 𝑛1 𝑛2 𝑛1

← 𝚲 →

𝒂
𝒃

1 2 3
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• Our solution compromise with

1) Evanesce wave - 𝑞𝑎 𝑥 + 𝑡 𝑖𝑠 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑖𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦

2) Transverse wave 

3) Wave define by the periodic pattern

• We will focus on equation - 3 𝐸𝐾 𝑥 ⋅ 𝑒𝑥𝑝 𝑖𝐾𝑥 .

• According to Floquet’s theorem this wave must have Bloch form, so that
𝐸(𝑥) is periodic with a period Λ = 𝑎 + 𝑏.

𝑬𝑲 𝒙 + 𝚲 = 𝑬𝑲(𝒙)

• The field solution is obtained through the Transfer Matrix Method, which link the complex 
amplitude of the incident and reflected wave from both side on the boundary.

𝑛2 𝑛1𝑛𝑔

𝑛𝑎

𝑛2 𝑛1 𝑛2 𝑛1 𝑛2 𝑛1

← 𝚲 →

𝒂
𝒃

Conventional 
slab waveguide

𝐸𝐾(𝑥)

𝐸𝐾(𝑥)

𝐸𝐾(𝑥 + 𝑁Λ)

𝐸𝐾 𝑥 + 𝑁Λ ȁ𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡
𝐸𝐾 𝑥 + 𝑁Λ ȁ𝑟𝑒𝑓𝑙𝑒𝑐𝑡

= 𝑇 ⋅
𝐸𝐾 𝑥 ȁ𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡
𝐸𝐾 𝑥 ȁ𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝐸𝐾(𝑥 + 𝑁Λ)
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• The Transfer Matrix Method will give us the following  variables:

• 𝐴 = 𝑒−𝑖𝑘1𝑥𝑎 cos 𝑘2𝑥𝑏 −
𝑖

2

𝑘2𝑥

𝑘1𝑥
−

𝑘1𝑥

𝑘2𝑥
sin 𝑘2𝑥𝑏

• 𝐵 = 𝑒𝑖𝑘1𝑥𝑎 −
𝑖

2

𝑘2𝑥

𝑘1𝑥
−

𝑘1𝑥

𝑘2𝑥
sin 𝑘2𝑥𝑏

• 𝐶 = 𝐵∗ ; 𝐷 = 𝐴∗

𝑤ℎ𝑒𝑟𝑒: 𝑘𝑖𝑥 =
𝜔

𝑐
𝑛𝑖

2

− 𝛽2 , 𝑖 = 1,2

• Note: 𝐴𝐵 − 𝐵𝐶 = 1 (unimodal)

• After further development (that we will not go into here), the field 𝐸(𝑥) will equal to:

𝐸 𝑥 = 𝐸𝐾 𝑥 ⋅ 𝑒𝑖𝐾𝑥

= 𝑎0𝑒
𝑖𝑘1𝑥 𝑥−𝑛Λ + 𝑏0𝑒

−𝑖𝑘1𝑥 𝑥−𝑛Λ 𝑒−𝑖𝐾 𝑥−𝑛Λ ⋅ 𝑒𝑖𝐾𝑥

𝑛2 𝑛1𝑛𝑔

𝑛𝑎

𝑛2 𝑛1 𝑛2 𝑛1 𝑛2 𝑛1

← 𝚲 →

𝒂
𝒃
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• Where the coefficients 𝑎0 and 𝑏0 are:

𝑎0
𝑏0

=
𝐵

𝑒−𝑖𝐾Λ − 𝐴

• And the argument 𝑒𝑖𝐾Λ equal to:

𝑒𝑖𝐾Λ =
𝐴 + 𝐷

2
±

𝐴 + 𝐷

2

2

− 1

• In the regions where 
𝐴+𝐷

2

2
< 1 ,we get that 𝐾 = 𝑟𝑒𝑎𝑙 ,  which indicate on propagating Bloch waves

• Where 
𝐴+𝐷

2

2
> 1 the Bloch wavenumber become 𝐾 = 𝑚𝜋/Λ + 𝑖𝐾𝑖 , which contain an imaginary 

argument which in turn cause the Bloch wave to evanescent

• These are the so-called “forbidden gaps” of the periodic medium.

𝑛2 𝑛1𝑛𝑔

𝑛𝑎

𝑛2 𝑛1 𝑛2 𝑛1 𝑛2 𝑛1

← 𝚲 →

𝒂
𝒃
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• To obtain solutions for the mode of the waveguide, we match the fields and their
𝑥 derivatives, at the boundary of 𝑥 = 0 and 𝑥 = 𝑡.

• Using the solution  for the field 𝐸 𝑥 , the Bloch field 𝐸𝐾(𝑥) and the values of the
coefficients 𝑎0, 𝑏0 we get the dispersion relation:

𝑘𝑔
𝑞𝑎 cos 𝑘𝑔𝑡 − 𝑘𝑔 sin 𝑘𝑔𝑡

𝑞𝑎 sin 𝑘𝑔𝑡 + 𝑘𝑔 cos 𝑘𝑔𝑡
= −𝑖𝑘1𝑥

𝑒−𝑖𝐾Λ − 𝐴 − 𝐵

𝑒−𝑖𝐾Λ − 𝐴 + 𝐵

• We interested in the evanescent Bloch wave.  

𝑛2 𝑛1𝑛𝑔

𝑛𝑎

𝑛2 𝑛1 𝑛2 𝑛1 𝑛2 𝑛1

← 𝚲 →

𝒂
𝒃

Depend only on 
parameters of the guiding 

and substrate 

Depend only on 
parameters of the periodic 

medium
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𝑘𝑔
𝑞𝑎 cos 𝑘𝑔𝑡 − 𝑘𝑔 sin 𝑘𝑔𝑡

𝑞𝑎 sin 𝑘𝑔𝑡 + 𝑘𝑔 cos 𝑘𝑔𝑡
= −𝑖𝑘1𝑥

𝑒−𝑖𝐾Λ − 𝐴 − 𝐵

𝑒−𝑖𝐾Λ − 𝐴 + 𝐵

• For confined propagation 𝛽, 𝑞𝑎 𝑎𝑛𝑑 𝑘𝑔 are real so that the left side of is a real
number. 

• The right side is real only when the propagating conditions in the periodic medium

fall within one of the “forbidden gaps”, meaning 
𝐴+𝐷

2

2
> 1 . 

• It follows that confined lossless modes of the composite waveguide exist.

• How to find the guiding modes?

• solve for the eigenmode by starting with some value of 𝛽 < 𝜔/𝑐 𝑛𝑔.\

• For a given 𝜔, this determine the 𝑘𝑔, 𝑘𝑎, 𝑘1𝑥 , 𝑘2𝑥

• If the resulting values of A and D correspond to a “forbidden gap” 
𝐴+𝐷

2

2
> 1 → the right side is (fixed) real number.

• We then proceed to adjust the thickness of the guiding layer 𝑡 until an equality results.

𝑛2 𝑛1𝑛𝑔

𝑛𝑎

𝑛2 𝑛1 𝑛2 𝑛1 𝑛2 𝑛1

← 𝚲 →

𝒂
𝒃
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• A field distribution of such a waveguide is shown in 
the figure.

• We can see that in the periodic medium the field 
corresponds to a periodic pattern under an 
evanescent envelope 𝒆−𝑲𝒙 as needed from a Bloch 
wave in a forbidden gap.

• The evanescent decay is nearly complete in several 
periods so that practical structures.

• In practical uses, few cells (say ten) are a good 
approximation to the semi-infinite layered medium 
assumed in the analysis.

Yeh, P., & Yariv, A. (1976). Bragg reflection waveguides. Optics Communications, 19(3), 427-430.
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• Other possible architecture for the waveguide is double 
side periodic pattern.

• This will allow us to use air as the guiding medium.

• The equivalent equation for the mode (without analysis):

−𝑖𝑘1𝑥
𝑒−𝑖𝐾Λ − 𝐴 − 𝐵

𝑒−𝑖𝐾Λ − 𝐴 + 𝐵
= ቊ

𝑘𝑎 tan 𝑘𝑎𝑡/2 𝑓𝑜𝑟 𝑒𝑣𝑒𝑛 𝑇𝐸 𝑚𝑜𝑑𝑒𝑠

𝑘𝑎 cot 𝑘𝑎𝑡/2 𝑓𝑜𝑟 𝑜𝑑𝑑 𝑇𝐸 𝑚𝑜𝑑𝑒𝑠

𝑤ℎ𝑒𝑟𝑒 𝑘𝑎 =
𝜔

𝑐
𝑛𝑎

2
− 𝛽2

• Because the existence of a given mode, requires the 
simultaneous fulfillment of the condition within the 
guiding layer and the Bragg condition in the layered 
media – the Bragg fiber display strong discrimination 
against higher modes.

Yeh, P., & Yariv, A. (1976). Bragg reflection waveguides. Optics Communications, 19(3), 427-430.
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Xu, Y., Ouyang, G., Lee, R., & Yariv, A. (2002). Asymptotic matrix theory of Bragg fibers. Journal Of Lightwave Technology, 20(3), 428-440.

• We want to utilized the properties of the lossless and selective frequency 
propagation in the Bragg slab, for an optical fiber. 

• This will allow us to use different waveguide mechanism and overcome some 
of the limitation of the conventional fiber such as the high core index of 
refraction, and the necessity of small core radius for single mode. 

• The mathematical approach for the fiber (compare to slab waveguide) will be 
different, because the geometrical difference between the 2 waveguides, 
prevent us from using Bloch Theorem (cartesian vs. cylinder symmetry).

14



• Over the years many researchers solve this problem with different approaches, 
each one with its advantage and drawbacks. Every one of aim to find the guided 
modes in the Bragg fiber, with low restriction on the parameters and low 
calculation complexity 

• The main approaches are:

• FDTD (Finite-difference time-domain)

• FEM (Finite element method)

• Multiple scales approach 

• Asymptotic analysis for the cladding

• We will focus our discussion on the Asymptotic Analysis Method.

Xu, Y., Ouyang, G., Lee, R., & Yariv, A. (2002). Asymptotic matrix theory of Bragg fibers. Journal Of Lightwave Technology, 20(3), 428-440.
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• In this formalism, an arbitrary part of the fiber (core, for example) is treated 
exactly (full analytical solution), and the other part is approximate in the 
asymptotic limit. 

• Similarly, this approach divided to sub-methods, that
differ by the part that calculate exactly and the part
that is approximate.

• We will concentrate on the approach presented in the
article – “Asymptotic Matrix Theory of Bragg Fibers” 

• In this article, both the core and cladding are made from number of layers, such 
that the core is treated exactly, and the cladding are treated at the asymptotic 
limit.

Xu, Y., Ouyang, G., Lee, R., & Yariv, A. (2002). Asymptotic matrix theory of Bragg fibers. Journal Of Lightwave Technology, 20(3), 428-440.
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• For a planar air core Bragg waveguide the eigen solution that decays in the 
cladding structure can be found according to the Bloch theorem.

• For a cylindrically symmetric Bragg fiber, which is, strictly speaking, not periodic 
and for which the Bloch theorem does not apply, we cannot single out an eigen 
solution that decays in the fiber cladding layers.

• The problem was solved by using the asymptotic analysis, which enable us to find 
well approximate solution for the Bragg fiber.

Find the field 
through the 

solution of the 
wave equation

Calculate the 
periodic media 
solution using 
transfer matrix

Find parameters 
for guiding modes, 

using the 
dispersion relation

Require Bloch 
Theorem
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• Exact Analytical solution is highly complex path, which slow down our ability
to run fast and meaningful simulation or development.

• The main key for using asymptotic is that in the asymptotic limit, the exact solutions of Maxwell 
equations, which take the form of Bessel functions, can be approximated as:

𝑒−𝑖𝑘𝑟/ 𝑟 𝒐𝒓 𝑒𝑖𝑘𝑟/ 𝑟

• And as we recall, in this form the solutions in Bragg fiber cladding resemble those in planar Bragg 
waveguides and eigen solutions in the fiber claddings can be similarly found – by comparison 
between the solution of the core (Bessel) and the cladding (Asymptotic) at the interface.

• NOTICE: One of the main goals of this article, compare to early articles, is to extend the analysis 
of the asymptotic formalism, in which the first several dielectric layers are treated exactly. The 
advantage is that we can choose the accuracy we want to get.

Xu, Y., Ouyang, G., Lee, R., & Yariv, A. (2002). Asymptotic matrix theory of Bragg fibers. Journal Of Lightwave Technology, 20(3), 428-440.
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• The fiber core region consists of the first 𝑁 concentric dielectric
layers, which includes the center low index core - 𝒏𝒄𝒐

𝟏 .

• The refractive index and thickness of layers in the core region can
be chosen arbitrarily - 𝒏𝒄𝒐

𝒊 , 𝒍𝒄𝒐
𝒊

• 𝜌 is the distance from the center of the fiber:

𝐶𝑜𝑟𝑒: 𝜌𝑐𝑜
𝑖 , 𝑤ℎ𝑒𝑛 𝑖 = 1,2,3, … , 𝑁

𝐶𝑙𝑎𝑑𝑑𝑖𝑛𝑔: 𝜌𝑐𝑙
𝑖 , 𝑤ℎ𝑒𝑛 𝑖 = 1,2,3, … , 𝑁

• As before the wave propagate in the 𝑧 direction, as slowly changing function of time:

𝝍 𝒓, 𝜽, 𝒛, 𝒕 = 𝝍 𝒓, 𝜽 𝒆𝒊 𝜷𝒛−𝝎𝒕

• Where 𝜓 can be every field of 𝐸𝑧/𝑟/𝜃 𝑜𝑟 𝐻𝑧/𝑟/𝜃.

Xu, Y., Ouyang, G., Lee, R., & Yariv, A. (2002). Asymptotic matrix theory of Bragg fibers. Journal Of Lightwave Technology, 20(3), 428-440.
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• The core is identical to conventional fiber (waveguide), so the 
transverse fields can be represented by 𝐸𝑧 and 𝐻𝑧:

𝐸𝑟 =
𝑖𝛽

𝜔2

𝑐2
𝑛2 − 𝛽2

𝜕

𝜕𝑟
𝐸𝑧 +

𝜔𝜇0
𝛽

𝜕

𝑟𝜕𝜃
𝐻𝑧

𝐸𝜃 =
𝑖𝛽

𝜔2

𝑐2
𝑛2 − 𝛽2

−
𝜔𝜇0
𝛽

𝜕

𝜕𝑟
𝐻𝑧 +

𝜕

𝑟𝜕𝜃
𝐸𝑧

𝐻𝑟 =
𝑖𝛽

𝜔2

𝑐2
𝑛2 − 𝛽2

𝜕

𝜕𝑟
𝐻𝑧 −

𝜔𝜖0𝑛
2

𝛽

𝜕

𝑟𝜕𝜃
𝐸𝑧

𝐻𝜃 =
𝑖𝛽

𝜔2

𝑐2
𝑛2 − 𝛽2

𝜔𝜖0𝑛
2

𝛽

𝜕

𝜕𝑟
𝐸𝑧 +

𝜕

𝑟𝜕𝜃
𝐻𝑧

• Where 𝒏 is the index of refraction of the medium, 𝛽 is the propagation constant, 𝜔 is the angular 
frequency, and 𝜖0 & 𝜇0 are the permittivity and permeability of the free space, respectively. 
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• Due to the cylindrical symmetry of Bragg fibers, we can take the
azimuthal dependence of the field components as cos 𝑙𝜃

• For each 𝑙, the general solutions for 𝐸𝑧 and 𝐻𝑧 (as we learn in
class) are the superposition of the Bessel functions –
either 𝐽𝑙 𝑥 & 𝑌𝑙 𝑥 or 𝐼𝑙 𝑥 & 𝐾𝑙 𝑥 .

• In the core medium - the solutions are given by 𝐽𝑙 𝑥 & 𝑌𝑙 𝑥 , due to the real value of 

𝑘 =
𝜔2

𝑐2
𝑛2 − 𝛽2

• Now we can write the solution of the transverse fields as a matrix using the Bessel functions

21



We get:
𝐸𝑧
1

𝑖𝛽
𝐻𝜃

𝐻𝑧
1

𝑖𝛽
𝐸𝜃

= 𝑀 𝑛𝑐𝑜
𝑖 , 𝑘𝑐𝑜

𝑖 , 𝑟

𝐴𝑖
𝐵𝑖
𝐶𝑖
𝐷𝑖

When the matrix 𝑀 is defined by:

𝑀 𝑛𝑐𝑜
𝑖 , 𝑘𝑐𝑜

𝑖 , 𝑟 =

𝐽𝑙 𝑘𝑐𝑜
𝑖 𝑟 𝑌𝑙 𝑘𝑐𝑜

𝑖 𝑟 0 0

𝜔𝜖0 𝑛𝑐𝑜
𝑖 2

𝑘𝑐𝑜
𝑖 𝛽

𝐽𝑙
′ 𝑘𝑐𝑜

𝑖 𝑟
𝜔𝜖0 𝑛𝑐𝑜

𝑖 2

𝑘𝑐𝑜
𝑖 𝛽

𝑌𝑙
′ 𝑘𝑐𝑜

𝑖 𝑟
𝑙

𝑘𝑐𝑜
𝑖 2

𝑟
𝐽𝑙 𝑘𝑐𝑜

𝑖 𝑟
𝑙

𝑘𝑐𝑜
𝑖 2

𝑟
𝑌𝑙 𝑘𝑐𝑜

𝑖 𝑟

0 0 𝐽𝑙 𝑘𝑐𝑜
𝑖 𝑟 𝑌𝑙 𝑘𝑐𝑜

𝑖 𝑟

𝑙

𝑘𝑐𝑜
𝑖 2

𝑟
𝐽𝑙 𝑘𝑐𝑜

𝑖 𝑟
𝑙

𝑘𝑐𝑜
𝑖 2

𝑟
𝑌𝑙 𝑘𝑐𝑜

𝑖 𝑟
𝜔𝜇0

𝑘𝑐𝑜
𝑖 𝛽

𝐽𝑙
′ 𝑘𝑐𝑜

𝑖 𝑟
𝜔𝜇0

𝑘𝑐𝑜
𝑖 𝛽

𝑌𝑙
′ 𝑘𝑐𝑜

𝑖 𝑟

Where: 𝐴𝑖 , 𝐵𝑖 , 𝐶𝑖 𝑎𝑛𝑑 𝐷𝑖 are constant within the 𝑖th layer ; and 𝑘𝑐𝑜𝑖 =
𝑛𝑐𝑜
𝑖 𝜔

𝑐

2

− 𝛽2

General Solution of 
𝐸𝑧 𝑎𝑛𝑑 𝐻𝑧
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• As we defined at the start, the core is comprised from multiple layer, 
and until now we found the fields only in the first layer

• To find the fields in the (𝑖 + 1)th layer, we apply the continuous
conditions at the interface between 2 layers at  𝑟 = 𝜌𝑐𝑜

𝑖 :

𝑀 𝑛𝑐𝑜
𝑖 , 𝑘𝑐𝑜

𝑖 , 𝜌𝑐𝑜
𝑖

𝐴𝑖
𝐵𝑖
𝐶𝑖
𝐷𝑖

= 𝑀 𝑛𝑐𝑜
𝑖+1, 𝑘𝑐𝑜

𝑖+1, 𝜌𝑐𝑜
𝑖+1

𝐴𝑖+1
𝐵𝑖+1
𝐶𝑖+1
𝐷𝑖+1

𝐴𝑖+1
𝐵𝑖+1
𝐶𝑖+1
𝐷𝑖+1

= 𝑀 𝑛𝑐𝑜
𝑖+1, 𝑘𝑐𝑜

𝑖+1, 𝜌𝑐𝑜
𝑖+1 −1

𝑀 𝑛𝑐𝑜
𝑖 , 𝑘𝑐𝑜

𝑖 , 𝜌𝑐𝑜
𝑖

𝐴𝑖
𝐵𝑖
𝐶𝑖
𝐷𝑖

• NOTICE: In the first core layer, the coefficients 𝑩𝟏 and 𝑫𝟏 are zero, because 𝒀𝒍 𝒙 is infinite at 𝒙 = 𝟎

𝑇𝑖 - Transfer Matrix
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• In the cladding region, we will utilize the asymptotic approximation.

• The cladding consist of two types of alternating dielectric layers:

• Type 1: refractive index 𝑛𝑐𝑙
1 and thickness 𝑙𝑐𝑙

1

• Type 2: refractive index 𝑛𝑐𝑙
2 and thickness 𝑙𝑐𝑙

2

• As we discussed earlier, the asymptotic approximation relate the Bessel function to exponent function, as 
follow:

𝐽 𝑥 ~
𝑎

𝑥
cos(𝑥 − 𝑏) ; 𝑌 𝑥 ~

𝑎

𝑥
sin(𝑥 − 𝑏)

𝜓 𝛼 𝑥 − 𝛽 = ሚ𝐴 ⋅ 𝐽 𝛼 𝑥 − 𝛽 + ෨𝐵 ⋅ 𝑌 𝛼 𝑥 − 𝛽 = 𝐴𝑒𝑖𝛼 𝑥−𝛽 + 𝐵𝑒−𝑖𝛼 𝑥−𝛽 / 𝛼𝑥

• Meaning, that the fields that in an exact calculation equal to superposition of Bessel function can be 

approximate to superposition of 𝑒+𝑖 , 𝑒−𝑖

24
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• We found that the exact solution and the approximated form of 𝐸𝑧 is:

𝐸𝑧 = 𝐴𝑖 ⋅ 𝐽𝑙 𝑘𝑐𝑙
𝑖 𝑟 + 𝐵𝑖 ⋅ 𝑌 𝑘𝑐𝑙

𝑖 𝑟

𝐸𝑧 =

1

𝑘𝑐𝑙
1 𝑟

𝑎𝑛𝑒
𝑖𝑘𝑐𝑙

1 𝑟−𝜌𝑐𝑙
𝑛
+ 𝑏𝑛𝑒

−𝑖𝑘𝑐𝑙
1 𝑟−𝜌𝑐𝑙

𝑛
𝜌𝑐𝑙
𝑛 < 𝑟 < 𝜌𝑐𝑙

𝑛 + 𝑙𝑐𝑙
1

1

𝑘𝑐𝑙
2 𝑟

𝑎𝑛
′ 𝑒

𝑖𝑘𝑐𝑙
2 𝑟−𝜌′𝑐𝑙

𝑛

+ 𝑏𝑛
′ 𝑒

−𝑖𝑘𝑐𝑙
2 𝑟−𝜌′𝑐𝑙

𝑛

𝜌′
𝑐𝑙
𝑛
< 𝑟 < 𝜌′

𝑐𝑙
𝑛
+ 𝑙𝑐𝑙

2

• Its important to note, that for this approximation to work, 𝑟 must be large enough.

• This is one of the main advantage to use multiple layers as the core – we can choose to calculate as many 
layer as needed of the core as exact, and when we far enough from the axis, we can use the approximations.

• Same go for 𝐻𝑧 (with 𝑐𝑛, 𝑐𝑛
′ , 𝑑𝑛 𝑎𝑛𝑑 𝑑𝑛

′ ).

• With 𝐸𝑧 & 𝐻𝑧 we can calculate all the other field as before.
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• To summarized our solution for the fields so far:

𝜌𝑐𝑙
𝑛 < 𝑟 < 𝜌𝑐𝑙

𝑛 + 𝑙𝑐𝑙
1 :

𝐸𝑧 =
𝑓𝑇𝑀

𝑘𝑐𝑙
1 𝑟

𝑎𝑛𝑒
𝑖𝑘𝑐𝑙

1 𝑟−𝜌𝑐𝑙
𝑛
+ 𝑏𝑛𝑒

−𝑖𝑘𝑐𝑙
1 𝑟−𝜌𝑐𝑙

𝑛

𝐻𝜃 = −
𝜔𝜖0 𝑛𝑐𝑙

1 2

𝑘𝑐𝑙
1

𝑓𝑇𝑀

𝑘𝑐𝑙
1 𝑟

𝑎𝑛𝑒
𝑖𝑘𝑐𝑙

1 𝑟−𝜌𝑐𝑙
𝑛
− 𝑏𝑛𝑒

−𝑖𝑘𝑐𝑙
1 𝑟−𝜌𝑐𝑙

𝑛

𝐻𝑧 =
𝑓𝑇𝐸

𝑘𝑐𝑙
1 𝑟

𝑐𝑛𝑒
𝑖𝑘𝑐𝑙

1 𝑟−𝜌𝑐𝑙
𝑛
+ 𝑑𝑛𝑒

−𝑖𝑘𝑐𝑙
1 𝑟−𝜌𝑐𝑙

𝑛

𝐸𝜃 = −
𝜔𝜇0

𝑘𝑐𝑙
1

𝑓𝑇𝐸

𝑘𝑐𝑙
1 𝑟

𝑐𝑛𝑒
𝑖𝑘𝑐𝑙

1 𝑟−𝜌𝑐𝑙
𝑛
− 𝑑𝑛𝑒

−𝑖𝑘𝑐𝑙
1 𝑟−𝜌𝑐𝑙

𝑛

𝜌′𝑐𝑙
𝑛
< 𝑟 < 𝜌′𝑐𝑙

𝑛
+ 𝑙𝑐𝑙

2 :

𝐸𝑧 =
𝑓𝑇𝑀

𝑘𝑐𝑙
2 𝑟

𝑎𝑛
′ 𝑒

𝑖𝑘𝑐𝑙
2 𝑟−𝜌′𝑐𝑙

𝑛

+ 𝑏𝑛
′ 𝑒

−𝑖𝑘𝑐𝑙
1 𝑟−𝜌′𝑐𝑙

𝑛

𝐻𝜃 = −
𝜔𝜖0 𝑛𝑐𝑙

2 2

𝑘𝑐𝑙
2

𝑓𝑇𝑀

𝑘𝑐𝑙
2 𝑟

𝑎𝑛
′ 𝑒

𝑖𝑘𝑐𝑙
2 𝑟−𝜌′𝑐𝑙

𝑛

− 𝑏𝑛
′ 𝑒

−𝑖𝑘𝑐𝑙
2 𝑟−𝜌′𝑐𝑙

𝑛

𝐻𝑧 =
𝑓𝑇𝐸

𝑘𝑐𝑙
2 𝑟

𝑐𝑛
′ 𝑒

𝑖𝑘𝑐𝑙
2 𝑟−𝜌′𝑐𝑙

𝑛

+ 𝑑𝑛
′ 𝑒

−𝑖𝑘𝑐𝑙
2 𝑟−𝜌′𝑐𝑙

𝑛

𝐸𝜃 = −
𝜔𝜇0

𝑘𝑐𝑙
2

𝑓𝑇𝑒

𝑘𝑐𝑙
2 𝑟

𝑐𝑛
′ 𝑒

𝑖𝑘𝑐𝑙
2 𝑟−𝜌′𝑐𝑙

𝑛

− 𝑑𝑛
′ 𝑒

−𝑖𝑘𝑐𝑙
2 𝑟−𝜌′𝑐𝑙

𝑛
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• It should be noted that the TM component (including 𝐸𝑧 and 𝐻𝜃) and the TE 
component (including 𝐸𝜃 and 𝐻𝑧) are decoupled in the asymptotic limit, with the
TM component amplitude being 𝑓𝑇𝑀 and the TE component amplitude being 𝑓𝑇𝐸.

• The solutions take form of the traveling wave (𝑒±𝑖𝛽𝑧) with 1/ 𝑟 - which mean that properties of the 
cylindrically symmetric Bragg stacks resemble those of planar Bragg stacks.

• Hence, the fields at neighbor cladding pairs are the same except an overall amplitude change of amplitude, 
which is direct consequence of Bloch theorem

• By matching fields at interfaces between dielectric layers, we can find the coefficients 𝑎𝑛, 𝑏𝑛, 𝑐𝑛, 𝑑𝑛, in the 
form of:

𝑎𝑛
𝑏𝑛

= 𝜆𝑇𝑀
𝑛−1

𝐵𝑇𝑀
𝜆𝑇𝑀 − 𝐴𝑇𝑀

𝑐𝑛
𝑑𝑛

= 𝜆𝑇𝐸
𝑛−1

𝐵𝑇𝐸
𝜆𝑇𝐸 − 𝐴𝑇𝐸

Base
Coefficients

Change of 
Amplitude
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• By matching fields at interfaces between dielectric layers, we can find the
coefficients 𝑎𝑛, 𝑏𝑛, 𝑐𝑛, 𝑑𝑛:

𝐴𝑇𝐸 = 𝑒𝑖𝑘𝑐𝑙
1 𝑙𝑐𝑙

1
𝑖
𝑘𝑐𝑙
1 2

+ 𝑘𝑐𝑙
2 2

2𝑘𝑐𝑙
1 𝑘𝑐𝑙

2 ⋅ sin 𝑘𝑐𝑙
2 𝑙𝑐𝑙

2 + cos 𝑘𝑐𝑙
2 𝑙𝑐𝑙

2

𝐵𝑇𝐸 = 𝑖𝑒−𝑖𝑘𝑐𝑙
1 𝑙𝑐𝑙

1 𝑘𝑐𝑙
1 2

− 𝑘𝑐𝑙
2 2

2𝑘𝑐𝑙
1 𝑘𝑐𝑙

2 sin 𝑘𝑐𝑙
2 𝑙𝑐𝑙

2

𝐴𝑇𝑀 = 𝑒𝑖𝑘𝑐𝑙
1 𝑙𝑐𝑙

1
𝑖
𝑛𝑐𝑙
2 4

𝑘𝑐𝑙
1 2

+ 𝑛𝑐𝑙
1 4

𝑘𝑐𝑙
2

2

2 𝑛𝑐𝑙
1 2 𝑛𝑐𝑙

2 2𝑘𝑐𝑙
1 𝑘𝑐𝑙

2 ⋅ sin 𝑘𝑐𝑙
2 𝑙𝑐𝑙

2 + cos 𝑘𝑐𝑙
2 𝑙𝑐𝑙

2

𝐵𝑇𝐸 = 𝑖𝑒−𝑖𝑘𝑐𝑙
1 𝑙𝑐𝑙

1 𝑛𝑐𝑙
2 4

𝑘𝑐𝑙
1 2

+ 𝑛𝑐𝑙
1 4

𝑘𝑐𝑙
2

2

2 𝑛𝑐𝑙
1 2 𝑛𝑐𝑙

2 2𝑘𝑐𝑙
1 𝑘𝑐𝑙

2 sin 𝑘𝑐𝑙
2 𝑙𝑐𝑙

2

𝝀𝑻𝑬 = 𝑹𝒆 𝑨𝑻𝑬 ± 𝑹𝒆 𝑨𝑻𝑬
𝟐 − 𝟏

𝝀𝑻𝑴 = 𝑹𝒆 𝑨𝑻𝑴 ± 𝑹𝒆 𝑨𝑻𝑴
𝟐 − 𝟏
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• The field amplitudes in type 2 layer of the 𝒏th cladding pair can be found by applying
the condition of 𝐸𝑧, 𝐸𝜃 , 𝐻𝑧 and 𝐻𝜃 being continuous at 𝑟 = 𝜌′𝑐𝑙

𝑛 , which gives:

𝑎𝑛
′

𝑏𝑛
′ =

1

2

𝑘𝑐𝑙
2

𝑘𝑐𝑙
1

1 +
𝑛𝑐𝑙
1 2

𝑘𝑐𝑙
2

𝑛𝑐𝑙
2 2𝑘𝑐𝑙

1 𝑒𝑖𝑘𝑐𝑙
1 𝑙𝑐𝑙

1
1 −

𝑛𝑐𝑙
1 2

𝑘𝑐𝑙
2

𝑛𝑐𝑙
2 2𝑘𝑐𝑙

1 𝑒−𝑖𝑘𝑐𝑙
1 𝑙𝑐𝑙

1

1 −
𝑛𝑐𝑙
1 2

𝑘𝑐𝑙
2

𝑛𝑐𝑙
2 2𝑘𝑐𝑙

1 𝑒𝑖𝑘𝑐𝑙
1 𝑙𝑐𝑙

1
1 +

𝑛𝑐𝑙
1 2

𝑘𝑐𝑙
2

𝑛𝑐𝑙
2 2𝑘𝑐𝑙

1 𝑒−𝑖𝑘𝑐𝑙
1 𝑙𝑐𝑙

1

⋅
𝑎𝑛
𝑏𝑛

𝑐𝑛
′

𝑑𝑛
′ =

1

2

𝑘𝑐𝑙
2

𝑘𝑐𝑙
1

1 +
𝑘𝑐𝑙
2

𝑘𝑐𝑙
1 𝑒𝑖𝑘𝑐𝑙

1 𝑙𝑐𝑙
1

1 −
𝑘𝑐𝑙
2

𝑘𝑐𝑙
1 𝑒−𝑖𝑘𝑐𝑙

1 𝑙𝑐𝑙
1

1 −
𝑘𝑐𝑙
2

𝑘𝑐𝑙
1 𝑒𝑖𝑘𝑐𝑙

1 𝑙𝑐𝑙
1

1 +
𝑘𝑐𝑙
2

𝑘𝑐𝑙
1 𝑒−𝑖𝑘𝑐𝑙

1 𝑙𝑐𝑙
1

⋅
𝑐𝑛
𝑑𝑛

• As we can see, the transfer matrix depend on the wavenumbers and the thickness of the first layer.
(the method propagate the wavefunction through the 𝑙𝑐𝑙

1 , and then transfer through the boundary – change 
in the 𝑘 of the medium)
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• The guided modes in a Bragg fiber are founded by matching the exact solution in the
last core layer with the asymptotic solution in the first cladding layer at the
interface 𝑟 = 𝜌𝑐𝑜

𝑁 = 𝜌𝑐𝑙
1 :

𝑀 𝑛𝑐𝑜
𝑁 , 𝑘𝑐𝑜

𝑁 , 𝜌𝑐𝑜
𝑁

𝐴𝑁
𝐵𝑁
𝐶𝑁
𝐷𝑁

=

𝑓𝑇𝑀

𝑘𝑐𝑙
1 𝜌𝑐𝑙

1

𝜆𝑇𝑀 − 𝐴𝑇𝑀 + 𝐵𝑇𝑀

𝑖𝜔𝜖0 𝑛𝑐𝑙
1 2

𝑘𝑐𝑙
1 𝛽

𝑓𝑇𝑀

𝑘𝑐𝑙
1 𝜌𝑐𝑙

1

𝜆𝑇𝑀 − 𝐴𝑇𝑀 − 𝐵𝑇𝑀

𝑓𝑇𝐸

𝑘𝑐𝑙
1 𝜌𝑐𝑙

1

𝜆𝑇𝐸 − 𝐴𝑇𝐸 + 𝐵𝑇𝐸

𝑖𝜔𝜇0

𝑘𝑐𝑙
1 𝛽

𝑓𝑇𝐸

𝑘𝑐𝑙
1 𝜌𝑐𝑙

1

𝜆𝑇𝐸 − 𝐴𝑇𝐸 − 𝐵𝑇𝐸

Fields Solution at the
first cladding layer 

Transfer Matrix

Constants in the
Nth layer31



• We want to relate the coefficients of the Nth core layer, to the first core layer.

• As discussed before, in the first core layer - 𝐵1 = 𝐷1 = 0 (because 𝑌 𝑥 is infinite
at 𝑥 = 0). We then denote 𝐴1 𝑎𝑠 𝒜𝑇𝑀 and 𝐶1 𝑎𝑠 𝒞𝑇𝐸:

𝐴𝑁
𝐵𝑁
𝐶𝑁
𝐷𝑁

= 𝑻𝑵−𝟏 ⋅⋅⋅ 𝑻𝟐 𝑀(𝑛𝑐𝑜
2 , 𝑘𝑐𝑜

2 , 𝜌𝑐𝑜
1 ) −1 ⋅

𝐽𝑙 𝑘𝑐𝑜
1 𝜌𝑐𝑜

1 0

𝜔𝜖0 𝑛𝑐𝑜
1 2

𝑘𝑐𝑜
1 𝛽

𝐽𝑙
′ 𝑘𝑐𝑜

1 𝜌𝑐𝑜
1

0
𝑙

𝑘𝑐𝑜
𝑖 2

𝜌𝑐𝑜
1
𝐽𝑙 𝑘𝑐𝑜

1 𝜌𝑐𝑜
1

𝑙

𝑘𝑐𝑜
1 2𝜌𝑐𝑜

1 𝐽𝑙 𝑘𝑐𝑜
1 𝑟

𝐽𝑙 𝑘𝑐𝑜
1 𝜌𝑐𝑜

1

𝜔𝜇0

𝑘𝑐𝑜
𝑖 𝛽

𝐽𝑙
′ 𝑘𝑐𝑜

1 𝜌𝑐𝑜
1

⋅
𝒜𝑇𝑀

𝒞𝑇𝐸

• We will define the full transfer matrix as combination of all the transfer matrices between each boundaries 
are:

𝑻 = 𝑀 𝑛𝑐𝑜
2 , 𝑘𝑐𝑜

2 , 𝜌𝑐𝑜
1 𝑀−1 𝑛𝑐𝑜

2 , 𝑘𝑐𝑜
2 , 𝜌𝑐𝑜

2 ⋅⋅⋅ 𝑀 𝑛𝑐𝑜
𝑁 , 𝑘𝑐𝑜

𝑁 , 𝜌𝑐𝑜
𝑁−1 𝑀−1 𝑛𝑐𝑜

𝑁 , 𝑘𝑐𝑜
𝑁 , 𝜌𝑐𝑜

𝑁 =

ෑ

𝑖=2

𝑁

𝑀 𝑛𝑐𝑜
𝑖 , 𝑘𝑐𝑜

𝑖 , 𝜌𝑐𝑜
𝑖−1 𝑀−1 𝑛𝑐𝑜

𝑖 , 𝑘𝑐𝑜
𝑖 , 𝜌𝑐𝑜

𝑖 =

𝑡11 𝑡12 𝑡13 𝑡14
𝑡21 𝑡22 𝑡23 𝑡24
𝑡31 𝑡32 𝑡33 𝑡34
𝑡41 𝑡42 𝑡43 𝑡44
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• Substituting the argument into the equation, and implementing 𝑻 into it, we get:  

𝐽𝑙 𝑘𝑐𝑜
1 𝜌𝑐𝑜

1 0

𝜔𝜖0 𝑛𝑐𝑜
1 2

𝑘𝑐𝑜
1 𝛽

𝐽𝑙
′ 𝑘𝑐𝑜

1 𝜌𝑐𝑜
1

0
𝑙

𝑘𝑐𝑜
𝑖 2

𝜌𝑐𝑜
1
𝐽𝑙 𝑘𝑐𝑜

1 𝜌𝑐𝑜
1

𝑙

𝑘𝑐𝑜
1 2𝜌𝑐𝑜

1 𝐽𝑙 𝑘𝑐𝑜
1 𝑟

𝐽𝑙 𝑘𝑐𝑜
1 𝜌𝑐𝑜

1

𝜔𝜇0

𝑘𝑐𝑜
𝑖 𝛽

𝐽𝑙
′ 𝑘𝑐𝑜

1 𝜌𝑐𝑜
1

⋅
𝒜𝑇𝑀

𝒞𝑇𝐸
= 𝑻

𝑓𝑇𝑀

𝑘𝑐𝑙
1 𝜌𝑐𝑙

1

𝜆𝑇𝑀 − 𝐴𝑇𝑀 + 𝐵𝑇𝑀

𝑖𝜔𝜖0 𝑛𝑐𝑙
1 2

𝑘𝑐𝑙
1 𝛽

𝑓𝑇𝑀

𝑘𝑐𝑙
1 𝜌𝑐𝑙

1

𝜆𝑇𝑀 − 𝐴𝑇𝑀 − 𝐵𝑇𝑀

𝑓𝑇𝐸

𝑘𝑐𝑙
1 𝜌𝑐𝑙

1

𝜆𝑇𝐸 − 𝐴𝑇𝐸 + 𝐵𝑇𝐸

𝑖𝜔𝜇0

𝑘𝑐𝑙
1 𝛽

𝑓𝑇𝐸

𝑘𝑐𝑙
1 𝜌𝑐𝑙

1

𝜆𝑇𝐸 − 𝐴𝑇𝐸 − 𝐵𝑇𝐸
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• From the last equation, we can see that 𝒜𝑇𝑀 and 𝒞𝑇𝐸 are linearly related to the 
field in the first cladding layer – 𝑓𝑇𝑀 𝑎𝑛𝑑 𝑓𝑇𝐸 via a 4x4 transfer matrix 𝑻 .

• So, we have 4 equations with 4 independent variables, which is suffice to determine the propagation 
constant 𝛽 and the field distribution of all guided Bragg fiber modes

• For simplification we introduce 8 new parameters:

𝑔𝑇𝐸
𝑗

= 𝑡𝑗3 𝜆𝑇𝐸 − 𝐴𝑇𝐸 + 𝐵𝑇𝐸 −
𝑖𝜔𝜇0

𝑘𝑐𝑙
1 𝛽

𝑡𝑗4 𝜆𝑇𝐸 − 𝐴𝑇𝐸 − 𝐵𝑇𝐸 / 𝑗 = 1, … , 4

𝑔𝑇𝑀
𝑗

= 𝑡𝑗1 𝜆𝑇𝑀 − 𝐴𝑇𝑀 + 𝐵𝑇𝑀 −
𝑖𝜔𝜖0 𝑛𝑐𝑙

1 2

𝑘𝑐𝑙
1 𝛽

𝑡𝑗2 𝜆𝑇𝑀 − 𝐴𝑇𝑀 − 𝐵𝑇𝑀 / 𝑗 = 1, … , 4

• Where 𝑡 are the elements in the transfer matrix 𝑻.

34



• These parameters will allow us to rewrite and split the previous equation between
the last core layer and the first cladding layer, to get:

𝐽𝑙 𝑘𝑐𝑜
1 𝜌𝑐𝑜

1 0

𝜔𝜖0 𝑛𝑐𝑜
1 2

𝑘𝑐𝑜
1 𝛽

𝐽𝑙
′ 𝑘𝑐𝑜

1 𝜌𝑐𝑜
1

𝑙

𝑘𝑐𝑜
1 2𝜌𝑐𝑜

1 𝐽𝑙 𝑘𝑐𝑜
1 𝑟

⋅
𝒜𝑇𝑀

𝒞𝑇𝐸
=

1

𝑘𝑐𝑙
1 𝜌𝑐𝑙

1

𝑔𝑇𝑀
1 𝑔𝑇𝐸

1

𝑔𝑇𝑀
2 𝑔𝑇𝐸

2

𝑓𝑇𝑀
𝑓𝑇𝐸

0 𝐽𝑙 𝑘𝑐𝑜
1 𝜌𝑐𝑜

1

𝑙

𝑘𝑐𝑜
𝑖 2

𝜌𝑐𝑜
1
𝐽𝑙 𝑘𝑐𝑜

1 𝜌𝑐𝑜
1

𝜔𝜇0

𝑘𝑐𝑜
𝑖 𝛽

𝐽𝑙
′ 𝑘𝑐𝑜

1 𝜌𝑐𝑜
1 ⋅

𝒜𝑇𝑀

𝒞𝑇𝐸
=

1

𝑘𝑐𝑙
1 𝜌𝑐𝑙

1

𝑔𝑇𝑀
3 𝑔𝑇𝐸

3

𝑔𝑇𝑀
4 𝑔𝑇𝐸

4

𝑓𝑇𝑀
𝑓𝑇𝐸

?
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• We will focus on the TE and TM modes – where 𝑙 = 0.

• The matrix 𝑀 𝑛𝑐𝑜
𝑖 , 𝑘𝑐𝑜

𝑖 , 𝑟 become block diagonalized to a two 2x2 matrices.

𝑀 𝑛𝑐𝑜
𝑖 , 𝑘𝑐𝑜

𝑖 , 𝑟 =

𝐽𝑙 𝑘𝑐𝑜
𝑖 𝑟 𝑌𝑙 𝑘𝑐𝑜

𝑖 𝑟 0 0

𝜔𝜖0 𝑛𝑐𝑜
𝑖 2

𝑘𝑐𝑜
𝑖 𝛽

𝐽𝑙
′ 𝑘𝑐𝑜

𝑖 𝑟
𝜔𝜖0 𝑛𝑐𝑜

𝑖 2

𝑘𝑐𝑜
𝑖 𝛽

𝑌𝑙
′ 𝑘𝑐𝑜

𝑖 𝑟 0 0

0 0 𝐽𝑙 𝑘𝑐𝑜
𝑖 𝑟 𝑌𝑙 𝑘𝑐𝑜

𝑖 𝑟

0 0
𝜔𝜇0

𝑘𝑐𝑜
𝑖 𝛽

𝐽𝑙
′ 𝑘𝑐𝑜

𝑖 𝑟
𝜔𝜇0

𝑘𝑐𝑜
𝑖 𝛽

𝑌𝑙
′ 𝑘𝑐𝑜

𝑖 𝑟

• As a result, the transfer matrix 𝑻 is also block diagonalized:

𝑇 =

𝑡11 𝑡12 0 0
𝑡21 𝑡22 0 0
0 0 𝑡33 𝑡34
0 0 𝑡43 𝑡44

• And the part of the new parameters 𝑔𝑇𝐸/𝑇𝑀 equal zero as well

𝑔𝑇𝑀
3 = 𝑔𝑇𝑀

4 = 𝑔𝑇𝐸
1 = 𝑔𝑇𝐸

2 = 0
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• By the definition of TM mode, the 𝐻𝑧 field much remain zero in the entire Bragg
fiber, which demand:

𝒞𝑇𝐸 = 0 , 𝑓𝑇𝐸 = 0

• Using all this conditions the first split equation, we can get:

𝐽𝑙 𝑘𝑐𝑜
1 𝜌𝑐𝑜

1 0

𝜔𝜖0 𝑛𝑐𝑜
1 2

𝑘𝑐𝑜
1 𝛽

𝐽𝑙
′ 𝑘𝑐𝑜

1 𝜌𝑐𝑜
1

𝑙

𝑘𝑐𝑜
1 2𝜌𝑐𝑜

1 𝐽𝑙 𝑘𝑐𝑜
1 𝑟

⋅
𝒜𝑇𝑀

𝒞𝑇𝐸
=

1

𝑘𝑐𝑙
1 𝜌𝑐𝑙

1

𝑔𝑇𝑀
1 𝑔𝑇𝐸

1

𝑔𝑇𝑀
2 𝑔𝑇𝐸

2

𝑓𝑇𝑀
𝑓𝑇𝐸

𝜔𝜖0 𝑛𝑐𝑜
1 2

𝑘𝑐𝑜
1 𝛽

𝐽0
′ 𝑘𝑐𝑜

1 𝜌𝑐𝑜
1

𝐽0 𝑘𝑐𝑜
1 𝜌𝑐𝑜

1 =
𝑔𝑇𝑀
2

𝑔𝑇𝑀
1

• After we specified the fiber parameters and chose the frequency 𝜔, the propagation constants of the TM 
modes can be found by solving for 𝛽.

𝒜𝑇𝑀 =
𝑔𝑇𝑀
1

𝐽0 𝑘𝑐𝑜
1 𝜌𝑐𝑜

1 𝑘𝑐𝑙
1 𝜌𝑐𝑙

1

𝑓𝑇𝑀
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• After we found 𝛽, we can go back to the first split equation and find 𝒜𝑇𝑀

𝐽𝑙 𝑘𝑐𝑜
1 𝜌𝑐𝑜

1 0

𝜔𝜖0 𝑛𝑐𝑜
1 2

𝑘𝑐𝑜
1 𝛽

𝐽𝑙
′ 𝑘𝑐𝑜

1 𝜌𝑐𝑜
1

𝑙

𝑘𝑐𝑜
1 2𝜌𝑐𝑜

1 𝐽𝑙 𝑘𝑐𝑜
1 𝑟

⋅
𝒜𝑇𝑀

𝒞𝑇𝐸
=

1

𝑘𝑐𝑙
1 𝜌𝑐𝑙

1

𝑔𝑇𝑀
1 𝑔𝑇𝐸

1

𝑔𝑇𝑀
2 𝑔𝑇𝐸

2

𝑓𝑇𝑀
𝑓𝑇𝐸

𝒜𝑇𝑀 =
𝑔𝑇𝑀
1

𝐽0 𝑘𝑐𝑜
1 𝜌𝑐𝑜

1 𝑘𝑐𝑙
1 𝜌𝑐𝑙

1

𝑓𝑇𝑀

Important Note: 
This result relates the mode amplitude 𝒜𝑇𝑀 in the first core layer 

to 𝑓𝑇𝑀, which determines the fields within the entire fiber cladding region
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• For TE modes, we can get similar solution using the same method with 𝒜𝑇𝑀 = 0:

• To find the propagation constant 𝛽: 

𝜔𝜇0

𝑘𝑐𝑜
1 𝛽

𝐽0
′ 𝑘𝑐𝑜

1 𝜌𝑐𝑜
1

𝐽0 𝑘𝑐𝑜
1 𝜌𝑐𝑜

1 =
𝑔𝑇𝐸
4

𝑔𝑇𝐸
3

• And the relation between 𝒞𝑇𝐸 and 𝑓𝑇𝐸 are:

𝒞𝑇𝐸 =
𝑔𝑇𝐸
3

𝐽0 𝑘𝑐𝑜
1 𝜌𝑐𝑜

1 𝑘𝑐𝑙
1 𝜌𝑐𝑙

1

𝑓𝑇𝐸

• To complete the fields coefficients at the core, we can choose the normalization factor of the guided mode 
such as 𝒜𝑇𝑀 = 1 or 𝒞𝑇𝐸 = 1 .

• At this point, we have all the information needed for finding the fields in the core and cladding regions.
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• Now we have a full process to find the variables and the fields of the Bragg fiber.

C
la

d
d

in
g

Find the 
asymptotic 

approximation 
coefficients

𝑎𝑛, 𝑏𝑛, 𝑐𝑛, 𝑑𝑛 C
la

d
d

in
g

Calculate the 
Fields 𝐸 & 𝐻

for all the fiber 
cladding layers

C
o

re

Define the 
coefficients of 
the first core 

layer 
(𝒜𝑇𝑀 𝑜𝑟 𝒞𝑇𝐸) C

o
re

Find the 
transfer matrix 

𝑇 using
𝑀−1 ⋅ 𝑀

C
o

re

Applying the 
propagation of 

the field 
coefficients 

using transfer 
matrix 𝑇

C
o

re

Calculate the 
Fields 𝐸 & 𝐻

for all the fiber 
core layers

Xu, Y., Ouyang, G., Lee, R., & Yariv, A. (2002). Asymptotic matrix theory of Bragg fibers. Journal Of Lightwave Technology, 20(3), 428-440.
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• For an air core Bragg fiber, the propagation loss is the sum of 2 terms:

• Loss through the finite number of cladding

• Absorption loss due to the cladding materials (Not consider here)

• The radiation loss depends mostly on the index contrast of the cladding media and the number of cladding 
pairs.

• We will use the asymptotic theory to estimate the number of cladding pairs needed to reduce the radiation 
loss below 0.2 𝑑𝐵/𝑘𝑚

• To simplify the calculation, we using Bragg fiber with one air core layer, bounded by 𝑁 pairs of cladding 
layers. 

Xu, Y., Ouyang, G., Lee, R., & Yariv, A. (2002). Asymptotic matrix theory of Bragg fibers. Journal Of Lightwave Technology, 20(3), 428-440.
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• As we develop before, we want to calculate the fields of both core and cladding.

• Because we have only 1 layer in the core, the transfer matrix 𝑇 will be an identity matrix.

• In turn, the 𝑔 parameters become:

𝑔𝑇𝐸
3 = 𝜆𝑇𝐸 − 𝐴𝑇𝐸 + 𝐵𝑇𝐸

𝑔𝑇𝐸
4 = −

𝑖𝜔𝜇0

𝑘𝑐𝑙
1 𝛽

𝜆𝑇𝐸 − 𝐴𝑇𝐸 − 𝐵𝑇𝐸

𝑔𝑇𝑀
1 = 𝜆𝑇𝑀 − 𝐴𝑇𝑀 + 𝐵𝑇𝑀

𝑔𝑇𝑀
2 = −

𝑖𝜔𝜖0 𝑛𝑐𝑙
1 2

𝑘𝑐𝑙
1 𝛽

𝑡𝑗2 𝜆𝑇𝑀 − 𝐴𝑇𝑀 − 𝐵𝑇𝑀

• Considering first the TE mode, the fields in the core are:

𝐻𝑧 𝑟 = 𝒞𝑇𝐸𝐽0 𝑘𝑐𝑜
1 𝑟

𝐸𝜃 = −𝑖
𝜔𝜇0

𝑘𝑐𝑙
1 𝒞𝑇𝐸𝐽0

′ 𝑘𝑐𝑜
1 𝑟

𝐻𝑟 = 𝑖
𝛽

𝑘𝑐𝑙
1 𝒞𝑇𝐸𝐽0

′ 𝑘𝑐𝑜
1 𝑟
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• From these expressions for 𝐸𝜃 and 𝐻𝑟, we find the power flux along the direction
𝒛 in the low index core:

𝑃𝑧
𝑇𝐸 = 𝒞𝑇𝐸

2
𝜋𝜔𝜇0𝛽

𝑘𝑐𝑙
1 2

න
0

𝜌𝑐𝑜
1

𝐽0
′ 𝑘𝑐𝑜

1 𝑟 2𝑟𝑑𝑟

• The fields at the cladding (asymptotic solutions) consist of 2 components: outgoing wave (𝑐𝑁) and incoming 
wave (𝑑𝑁).

• The radiation field outside 𝑁 layers Bragg fiber, can be well approximate by calculate only the outgoing 
component of the fields of the 𝑁 + 1 layer (𝑑𝑁+1 = 0). The fields at the 𝑁 + 1 cladding layer:

𝐻𝑧 =
𝑓𝑇𝐸

𝑘𝑐𝑙
1 𝑟

𝑐𝑁+1𝑒
𝑖𝑘𝑐𝑙

1 𝑟−𝜌𝑐𝑙
𝑁+1

+ 𝑑𝑁+1𝑒
−𝑖𝑘𝑐𝑙

1 𝑟−𝜌𝑐𝑙
𝑁+1

𝐸𝜃 =
𝜔𝜇0

𝑘𝑐𝑙
1

𝑓𝑇𝐸

𝑘𝑐𝑙
1 𝑟

𝑐𝑁+1𝑒
𝑖𝑘𝑐𝑙

1 𝑟−𝜌𝑐𝑙
𝑁+1

− 𝑑𝑁+1𝑒
−𝑖𝑘𝑐𝑙

1 𝑟−𝜌𝑐𝑙
𝑁+1
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• Using the last equation, and taking 𝑑𝑁+1 = 0: we can calculate the radial flux:

𝐻𝑧 =
𝑓𝑇𝐸

𝑘𝑐𝑙
1 𝑟

𝑐𝑁+1𝑒
𝑖𝑘𝑐𝑙

1 𝑟−𝜌𝑐𝑙
𝑁+1

; 𝐸𝜃 =
𝜔𝜇0

𝑘𝑐𝑙
1

𝑓𝑇𝐸

𝑘𝑐𝑙
1 𝑟

𝑐𝑁+1𝑒
𝑖𝑘𝑐𝑙

1 𝑟−𝜌𝑐𝑙
𝑁+1

• Hence, the radial flux is:

𝑃𝑟
𝑇𝐸 =

𝜋𝜔𝜇0

𝑘𝑐𝑙
1 2

𝑓𝑇𝐸
2 𝑐𝑁+1

2𝑑𝑧

• For TE modes propagating along the direction of the Bragg fiber, with the presence of radiation loss, the 
optical power decays as exp −𝛼𝑇𝐸𝑧 , where 𝛼𝑇𝐸 is the radial loss constant.

• From the definition of 𝑃𝑧
𝑇𝐸 and 𝑃𝑟

𝑇𝐸, we can calculate 𝛼𝑇𝐸 as:

𝛼𝑇𝐸 =
𝑃𝑟
𝑇𝐸

𝑃𝑧
𝑇𝐸𝑑𝑧

=
1

𝛽

𝑘𝑐𝑜
1

𝑘𝑐𝑙
1

2
𝐵𝑇𝐸

𝜆𝑇𝐸 − 𝐴𝑇𝐸 + 𝐵𝑇𝐸

2

𝜆𝑇𝐸
2𝑁 ⋅

𝐽0 𝑘𝑐𝑜
1 𝜌𝑐𝑜

1 2𝑘𝑐𝑙
1 𝜌𝑐𝑙

1

0׬
𝜌𝑐𝑜
1

𝑟𝑑𝑟 𝐽0
′ 𝑘𝑐𝑜

1 𝑟 2
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• For TM mode we can follow the same procedure and get:

𝛼𝑇𝑀 =
𝑃𝑟
𝑇𝑀

𝑃𝑧
𝑇𝑀𝑑𝑧

=
1

𝛽

𝑛𝑐𝑙
1 𝑘𝑐𝑜

1

𝑛𝑐𝑜
1 𝑘𝑐𝑙

1

2
𝐵𝑇𝑀

𝜆𝑇𝑀 − 𝐴𝑇𝑀 + 𝐵𝑇𝑀

2

𝜆𝑇𝑀
2𝑁 ⋅

𝐽0 𝑘𝑐𝑜
1 𝜌𝑐𝑜

1 2𝑘𝑐𝑙
1 𝜌𝑐𝑙

1

0׬
𝜌𝑐𝑜
1

𝑟𝑑𝑟 𝐽0
′ 𝑘𝑐𝑜

1 𝑟 2

• In order to have a meaningful meaning and feeling for the radiation loss (order of magnitude), we will use 
the following assumption, to simplify our result:

1. Define new parameter - 𝑥 = 𝑘𝑐𝑜
1 𝜌𝑐𝑜

1 .

2. For Bessel function, we can use - 𝐽0
′ 𝑥 = −𝐽1 𝑥 .

For order-of-magnitude estimate, we will choose 𝑥 = 3.8317 (first zero point of 𝐽1 𝑥 )

3. For Bessel function: 0׬
𝑥
𝑑𝑢 𝑢 𝐽1 𝑢 2 = 𝑥2 𝐽2 𝑥 2/2

• The last component in the right part of the equation become:

𝐽0 𝑘𝑐𝑜
1 𝜌𝑐𝑜

1 2𝑘𝑐𝑙
1 𝜌𝑐𝑙

1

0׬
𝜌𝑐𝑜
1

𝑑𝑟 𝑟 𝐽0
′ 𝑘𝑐𝑜

1 𝑟 2
= ቮ𝑘𝑐𝑜

1 𝑘𝑐𝑙
1 𝐽0 𝑥 2

0׬
𝑥
𝑑𝑢 𝑢 𝐽1 𝑢 2

𝑥=3.8317

≈ 0.522𝑘𝑐𝑜
1 𝑘𝑐𝑙

1
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• From the definition of 𝐴𝑇𝐸 , 𝐴𝑇𝑀, 𝐵𝑇𝐸 , 𝐵𝑇𝑀, 𝜆𝑇𝐸 , 𝜆𝑇𝑀 we can see that they have 
the same order of magnitude. Therefore, we can take the following arguments to be equal 1:

𝐵𝑇𝐸
𝜆𝑇𝐸 − 𝐴𝑇𝐸 + 𝐵𝑇𝐸

≈ 1 ;
𝐵𝑇𝑀

𝜆𝑇𝑀 − 𝐴𝑇𝑀 + 𝐵𝑇𝑀
≈ 1

• Combining this approximations, we can write:

𝛼𝑇𝐸 = 0.522
𝑘𝑐𝑜
1 3

𝛽𝑘𝑐𝑙
1 𝜆𝑇𝐸

2𝑁

𝛼𝑇𝑀 = 0.522
𝑛𝑐𝑙
1

𝑛𝑐𝑜
1

2
𝑘𝑐𝑜
1 3

𝛽𝑘𝑐𝑙
1 𝜆𝑇𝑀

2𝑁

• If we take some number in:

𝑛𝑐𝑜
1 = 1 𝑎𝑖𝑟 ; 𝜆 = 2𝜋𝑐/𝜔 = 1.55𝜇𝑚

𝑨𝒔𝒔𝒖𝒎𝒊𝒏𝒈: 𝛽 = 𝑘𝑐𝑜
1 = 𝜔/ 2𝑐 ; 𝑘𝑐𝑙

1 = 𝑛𝑐𝑙
1 𝜔/𝑐
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• The radiation loss constants for TE and TM mode (in 𝑑𝐵/𝑘𝑚):

𝛼𝑇𝐸 𝑑𝐵/𝑘𝑚 = 4.6 ⋅ 109
1

𝑛𝑐𝑙
1 𝜆𝑇𝐸

2𝑁

𝛼𝑇𝑀 𝑑𝐵/𝑘𝑚 = 4.6 ⋅ 109 ⋅ 𝑛𝑐𝑙
1 𝜆𝑇𝑀

2𝑁

• The values of 𝜆𝑇𝐸 and 𝜆𝑇𝑀 have complicated dependence on 𝛽, 𝑛𝑐𝑙
1 , 𝑙𝑐𝑙

1 , 𝑛𝑐𝑙
2 and 𝑙𝑐𝑙

2 . 

• However, when the cladding layers form quarter wave stack (meaning 𝑘𝑐𝑙
1 𝑙𝑐𝑙

1 = 𝑘𝑐𝑙
2 𝑙𝑐𝑙

2 = 𝜋/2), such that light 
is optimally confined, the expressions for 𝜆𝑇𝐸 and 𝜆𝑇𝑀 take simpler forms:

𝜆𝑇𝐸 = min
𝑘𝑐𝑙
2

𝑘𝑐𝑙
1 ,

𝑘𝑐𝑙
1

𝑘𝑐𝑙
2

𝜆𝑇𝑀 = min
𝑛𝑐𝑙
2

𝑛𝑐𝑙
1

2
𝑘𝑐𝑙
1

𝑘𝑐𝑙
2 ,

𝑛𝑐𝑙
1

𝑛𝑐𝑙
2

2
𝑘𝑐𝑙
2

𝑘𝑐𝑙
1
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• Using the arguments until now, we can calculate the number of layers needed in
the cladding to achieve loss equal or less than 0.2𝑑𝐵/𝑘𝑚.

• We choose cladding layer 2, to be the low index medium with 𝑛𝑐𝑙
2 = 1.5 (silica glass for example)

• For this index, for 0 < 𝛽 < 𝜔/𝑐 , the minimum value of 𝜆 are:

𝜆𝑇𝐸 = [ 𝑛𝑐𝑙
2 2−1]/[ 𝑛𝑐𝑙

1 2−1] ; 𝜆𝑇𝑀 = 𝑛𝑐𝑙
2 /𝑛𝑐𝑙

1

• Substituting this value into 𝛼𝑇𝐸/𝑇𝑀 we find that the minimum number of Bragg layers pairs required to 

achieve 0.2𝑑𝐵/𝑘𝑚 is:

𝑁𝑇𝐸 =
23.9 − ln 𝑛𝑐𝑙

1

ln 𝑛𝑐𝑙
1 2 − 1 − ln 𝑛𝑐𝑙

2 2 − 1

𝑁𝑇𝑀 =
23.9 + ln 𝑛𝑐𝑙

1

2 ln 𝑛𝑐𝑙
1 − ln 𝑛𝑐𝑙

2
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• Δ𝑛 = 𝑛𝑐𝑙
1 − 𝑛𝑐𝑙

2 - index contrast

• Δ𝑛 < 0.01 → 𝑁 > 1000

• 0.1 < Δ𝑛 < 1 → 𝑁 < 200

• 1 < Δ𝑛 < 3 → 12 < 𝑁 < 25

• In the asymptotic limit, the mixed modes (𝑙 ≠ 0) in the cladding
structure can always be classified into TE and TM components.

• Therefore, their radiation loss is determined by the TM 
component, because TM component is less confined and suffers
more radiation loss compared with TE component, as can be
seen from the figure.

• NOTICE: We used the smallest possible values of 𝜆𝑇𝐸/𝑇𝑀, 
corresponding to min. number of Bragg pairs for 0.2𝑑𝐵/𝑘𝑚 loss

• Better estimation requires values of 𝛽, 𝑛𝑐𝑙
1 , 𝑙𝑐𝑙

1 , 𝑛𝑐𝑙
2 , 𝑙𝑐𝑙

2 for exact 
calculation of 𝜆𝑇𝐸/𝑇𝑀 and 𝛼𝑇𝐸/𝑇𝑀.

For less than
0.2𝑑𝐵/𝑘𝑚

for both 𝑇𝐸 & 𝑇𝑀

Xu, Y., Ouyang, G., Lee, R., & Yariv, A. (2002). Asymptotic matrix theory of Bragg fibers. Journal Of Lightwave Technology, 20(3), 428-440.
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• We will compare our method to a well-known method called FDTD (Finite Difference Time-Domain)

• We will compare the dispersion properties of the Bragg fiber – with 2 graphs:

• 𝑛𝑒𝑓𝑓 = 𝛽c/𝜔 𝑣𝑠 𝜔[2𝜋𝑐/Λ]

• 𝜔 2𝜋𝑐/Λ 𝑣𝑠 𝛽 2𝜋/Λ

• The Bragg fiber will be comprised from:

• Cladding: 𝑛𝑐𝑙
1 = 4.6 , 𝑙𝑐𝑙

1 = 0.25Λ , 𝑛𝑐𝑙
2 = 1.5 , 𝑙𝑐𝑙

2 = 0.75Λ \\ where Λ = 𝑙𝑐𝑙
1 + 𝑙𝑐𝑙

2

• Core: cosist from 5 layers: 𝑛𝑐𝑜
1 = 1 , 𝜌𝑐𝑜

1 = 1Λ

𝑛𝑐𝑜
2 = 𝑛𝑐𝑜

4 = 4.6 , 𝑛𝑐𝑜
3 = 𝑛𝑐𝑜

5 = 1.5 ; 𝑙𝑐𝑜
2 = 𝑙𝑐𝑜

4 = 0.25Λ , 𝑙𝑐𝑜
3 = 𝑙𝑐𝑜

5 = 0.75Λ

• For the FDTD method we will choose Λ = 24 (number of cells for calculation).

• For index contrast we have chosen, 10 cladding pairs are enough to reduce the radiation loss to 
approximately 0.2 dB/km (as shown before). We will use 3 cladding pairs (+ 5 core layers).

Xu, Y., Ouyang, G., Lee, R., & Yariv, A. (2002). Asymptotic matrix theory of Bragg fibers. Journal Of Lightwave Technology, 20(3), 428-440.
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• Both the asymptotic analysis and FDTD calculation 
show that the Bragg fiber supports a guided 
mode propagating in the air core.

• The results shown for 𝑙 = 0, meaning the 
azimuthal dependence of the mode is cos 𝜃 or 
sin 𝜃

• The method agreed well with each other for the 
dispersion behavior. 

• The main source for the small difference is the 
numerical error in the finite difference time 
domain algorithm, which can be improve using 
more calculation cells. 

Xu, Y., Ouyang, G., Lee, R., & Yariv, A. (2002). Asymptotic matrix theory of Bragg fibers. Journal Of Lightwave Technology, 20(3), 428-440.
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• How is 𝑛𝑒𝑓𝑓 is smaller than 1?

• 𝛽 is the imaginary part of the propagation constant, which effect on the 
phase of the wave.

• The relation between them is:

𝛽 = 𝑛𝑒𝑓𝑓
2𝜋

𝜆

• In conventional fibers, because we leaning on total internal reflection 
(TIR) mechanism, the value of 𝑛𝑒𝑓𝑓 will always lay in:

𝑛𝑐𝑙𝑎𝑑𝑑𝑖𝑛𝑔 < 𝑛𝑒𝑓𝑓 < 𝑛𝑐𝑜𝑟𝑒
because 𝛽 must comply the condition of the critical angle

• In our method, where the TIR is no longer an issue, we can get lower 
value of 𝛽

Xu, Y., Ouyang, G., Lee, R., & Yariv, A. (2002). Asymptotic matrix theory of Bragg fibers. Journal Of Lightwave Technology, 20(3), 428-440.
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• The distribution of the field 𝐻𝑧 obtained from the calculation, is shown 
in the figure.

• The frequency and propagation constant of the mode are                      
𝜔 = 0.291 2𝜋𝑐/Λ and 𝛽 = 0.143(2𝜋/Λ) respectively.

• We can see that a guided mode has an azimuthal number of 𝑙 = 1.

• Most of the field contained within the air core and the first cladding 
layer.

• Because we used a small number of layers, a radiation field outside of 
the Bragg fiber has been developed.

Xu, Y., Ouyang, G., Lee, R., & Yariv, A. (2002). Asymptotic matrix theory of Bragg fibers. Journal Of Lightwave Technology, 20(3), 428-440.
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• A main advantage of this asymptotic analysis is that the result can be 
arbitrarily precise by incorporating more and more layers into the core.

• The asymptotic results obtained using an inner core region consist of 𝑁
dielectric layers, should converge as a function of 𝑁 to the exact solution.

• To show that behavior, we choose a core with 7 layers and calculate its 

effectivce index 𝑛𝑒𝑓𝑓
7 as base.

Then we compare the result to core with 1/3/5 layers. Where Δ𝑛𝑒𝑓𝑓
defined as 𝑛𝑒𝑓𝑓

𝑖 − 𝑛𝑒𝑓𝑓
7 .

• Results:

• At 1 layer, the difference go up to 0.2, which is quite significant.

• Addition of one more pair (3 layers combined), reduce the difference to 0.02 

• With 5 layers, it go down to 0.001 .

Xu, Y., Ouyang, G., Lee, R., & Yariv, A. (2002). Asymptotic matrix theory of Bragg fibers. Journal Of Lightwave Technology, 20(3), 428-440.
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• The field itself can be calculated using the steps we introduced:

• We apply this algorithm to study the field distribution of the guided Bragg fiber mode at 𝜔 = 0.286 2𝜋𝑐/Λ , 
using a core region of five layers, we find the propagation constant to be 𝛽 = 0.128 2𝜋/Λ .

• We compare this calculation to the “exact solution” – meaning calculation using the exact calculation of the core 
to all the cladding layers.
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• As anticipated, within the core region, the exact solution and the 
asymptotic solution are the same (same calculation).

• The accuracy of the approximation is relevant only at the cladding area, 
and as we can see, is very small for all the fields.

• Most of the field is contained in the core and converge to 0 at the 
cladding layers.

• NOTICE: The free-space wavelength of the mode is 𝜆 = 3.5Λ , and the 
core radius equal to Λ . Their ratio is 0.286, which demonstrate great 
results with small air core radius.

Xu, Y., Ouyang, G., Lee, R., & Yariv, A. (2002). Asymptotic matrix theory of Bragg fibers. Journal Of Lightwave Technology, 20(3), 428-440.
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