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Motivation - Intro

* By far, most of the optical fibers in use today, depending on Total Internal
Reflection for guiding light.

Using this phenomenon as the physics basis for the fiber, force the need for core
and cladding which have refractive indices.

In turn the refractive indices, contribute to the propagation loss in the fiber:
* Material absorption

* Radiation loss — scattering, dispersion, etc.

The possibility of other mechanism, was first pointed out by Yeh et al [1] -
Braqg Fiber

https://community.fs.com/blog/the-advantages-and-disadvantages-of-optical-fibers.html



Motivation — Bragg Fiber

* Bragg fiber is leaning on Bragg reflection phenomenon in a cylindrical fiber to
obtain lossless confined propagation in a core with a lower refractive index than
that of the cladding medium.

* Because Bragg fiber and conventional fibers utilized different
guiding mechanisms, we opening many possibilities difficult to
achieve otherwise:

* Use of low refractive index (even air) as the propagation medium,
giving rise to low propagation losses, in terms of material absorption,
scattering, dispersion, etc.

* Bragg fiber modes are truly single mode (if chosen correctly)

e Elimination of undesirable polarization dependent

Yeh, P, Yariv, A., & Maron, E. (1978). THEORY OF BRAGG FIBER. J Opt Soc Am, 68(9), 1196-1201.



Bragg Reflection - Planar Waveguide -,
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* Optical dielectric waveguides with slab configuration, like fibers, require
the index of refraction of the inner layer to exceed that of the bounding

media (identical to fibers)
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* In contrast, Bragg configuration can support lossless propagation in a low
index slab — providing that the bounding media are periodic.
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* The periodic pattern constrain the modes (for most) in the slab, as we will L .
show in the following analysis. " | .
* We will start the analysis for one side Bragg formation, and then expand it /
for 2-side Bragg formation.
,//f/i:*l
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Yeh, P., & Yariv, A. (1976). Bragg reflection waveguides. Optics Communications, 19(3), 427-430.



Bragg Reflection Waveguide

* Let's consider the indices of refraction:

are the periodic Bragg structure indices.

* Where n, is the free space index, n, is the slab index and n4, n, >
* To show the possibility of guiding modes in this structure, we will focus 4

our discussion on TE modes. For this transverse mode the only field

components are E,, Hy and H,.
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* E, is a propagating wave in z direction, so: E;, = E(x) - elhz
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Each of this fields, say E,, satisfied the wave equation (with e'®t dependence):

(Wavefunction oscillates in time with a well-
defined constant angular frequency w)



Bragg Reflection Waveguide

* The wave equation become:

2 2
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* We can choose our solution, as long it fits our derivative equation, so
we take the solution in the form:

((1) exp(qa(x + t)) x < —t
E(x) =15(2) ¢ cos(kgx) + ¢y sin(kgx) —t<x<0
L (3) Ex(x) - exp(iKx) x=0

e Where:
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Bragg Reflection Waveguide

e Qur solution compromise with

Conventional

SEREEEEE D) Transverse wave
3) Wave define by the periodic pattern

1) Evanesce wave - q,(x + t) is negative imaginary

» We will focus on equation - (3) Ex(x) - exp(iKx).

» According to Floguet’s theorem this wave must have Bloch form, so that

E(x) is periodic with a period A = a + b.

Ex(x+A) = Eg(x)
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* The field solution is obtained through the Transfer Matrix Method, which link the complex
amplitude of the incident and reflected wave from both side on the boundary.

Ex(x) EK(:x+NA)

Ex (x) - - Ex(x+NA)

» |

Ex(x + NA)lincident
Ex(x + NA)lreflect

|

Ex (x) |incident
Ex(x) |reflect

|



Bragg Reflection Waveguide

* The Transfer Matrix Method will give us the following variables:

e A= e thkwxa [cos(kab) - é (l;—i’z — :—;’Z) sin(kab)]

e B = etkixa [— L (% — k—l’;) sin(kab)]

e C =B" : D =A"

W \2
where: k;, = (?ni) - pB?% i

* Note: AB — BC = 1 (unimodal)
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 After further development (that we will not go into here), the field E'(x) will equal to:

E(x) = Ex(x) - &>
— {[aoeiklx(x—nA) + boe—iklx(x—nA)] e—iK(x—nA)} . ein



Bragg Reflection Waveguide

ng 2
* Where the coefficients ay and b, are: Mta
ap\ B
b, T \e—iKA _ 4
* And the argument 2 equal to:
2
iKA_<A+D>i\/<A+D> 4 4
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* In the regions where (T) < 1 ,we get that K = real , which indicate on propagating Bloch waves

2
A+D . : : : .
* Where (%) > 1 the Bloch wavenumber become K = mn/A + iK; , which contain an imaginary
argument which in turn cause the Bloch wave to evanescent

* These are the so-called “forbidden gaps” of the periodic medium.



Bragg Reflection Waveguide

ng
To obtain solutions for the mode of the waveguide, we match the fields and their
x derivatives, at the boundary of x = 0 and x = t.
* Using the solution for the field E(x), the Bloch field Ex (x) and the values of the
coefficients ay, by we get the dispersion relation:
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qq cos(kyt) — kg sin(kyt) . eKA-A-B
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= —ik .
“4a Sin(kgt) + kg cos(kgt) xSk 4+ B

Depend only on Depend only on

parameters of the guiding parameters of the periodic

and substrate medium

* We interested in the evanescent Bloch wave.
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Bragg Reflection Waveguide

Ny
p da cos(kyt) — kg sin(kgyt) . poiKA_ 4 _p  Ta
= —1 -
7 da Sin(kgt) + kg COS(kgt) X o-iKA _ 4+ B
* For confined propagation 8, q, and k, are real so that the left side of is a real
number.
* The right side is real only when the propagating conditions in the periodic medium
2
N
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fall within one of the “forbidden gaps”, meaning (#) >1.

It follows that confined lossless modes of the composite waveguide exist.

* How to find the guiding modes?

11

* solve for the eigenmode by starting with some value of § < (w/c)ng.\

* Foragiven w, this determine the kg, kg, k1, K2x

2
* If the resulting values of A and D correspond to a “forbidden gap” (A%D) >1 — therightside is (fixed) real number.

* We then proceed to adjust the thickness of the guiding layer t until an equality results.



Bragg Reflection Waveguide

* Afield distribution of such a waveguide is shown in e

the figure. /

* We can see that in the periodic medium the field
corresponds to a periodic pattern under an
evanescent envelope e ¥* as needed from a Bloch
wave in a forbidden gap.
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* The evanescent decay is nearly complete in several Mo
periods so that practical structures.

* In practical uses, few cells (say ten) are a good
approximation to the semi-infinite layered medium
assumed in the analysis.

Eafrnctive imdeg

lromaeerse held delriiticn

12
Yeh, P., & Yariv, A. (1976). Bragg reflection waveguides. Optics Communications, 19(3), 427-430.



Bragg Reflection Waveguide

e Other possible architecture for the waveguide is double
side periodic pattern.

e This will allow us to use air as the guiding medium.

* The equivalent equation for the mode (without analysis):

ik e ¥A—A—-B _ |kgtan(kqt/2) for even TE modes
YaxoskA A1 B T k, cot(k,t/2) for odd TE modes

RAefrac ek wde

where k, = \/(%na)z — B?

e Because the existence of a given mode, requires the
simultaneous fulfillment of the condition within the
guiding layer and the Bragg condition in the layered
media — the Bragg fiber display strong discrimination
against higher modes.

flakd drafr byt =

T rcandoy far gm

13
Yeh, P., & Yariv, A. (1976). Bragg reflection waveguides. Optics Communications, 19(3), 427-430.



Bragg Fiber

* We want to utilized the properties of the lossless and selective frequency
propagation in the Bragg slab, for an optical fiber.

* This will allow us to use different waveguide mechanism and overcome some
of the limitation of the conventional fiber such as the high core index of
refraction, and the necessity of small core radius for single mode.

* The mathematical approach for the fiber (compare to slab waveguide) will be
different, because the geometrical difference between the 2 waveguides,
prevent us from using Bloch Theorem (cartesian vs. cylinder symmetry).

Low Index Cladding

High lnaex Cladding

Bragg Fiber

Xu, Y., Ouyang, G., Lee, R., & Yariv, A. (2002). Asymptotic matrix theory of Bragg fibers. Journal Of Lightwave Technology, 20(3), 428-440.



Bragg Fiber — How to Solve?

* Over the years many researchers solve this problem with different approaches,
each one with its advantage and drawbacks. Every one of aim to find the guided
modes in the Bragg fiber, with low restriction on the parameters and low
calculation complexity

Low Index Cladding

* The main approaches are:

* FDTD (Finite-difference time-domain)

 FEM (Finite element method) “i :.

Lowlndel>.(‘ Cc;rg . hld -
. g n
* Multiple scales approach 3 igh Index Cladding

Bragg Fiber

* Asymptotic analysis for the cladding . —

* We will focus our discussion on the Asymptotic Analysis Method.

Xu, Y., Ouyang, G., Lee, R., & Yariv, A. (2002). Asymptotic matrix theory of Bragg fibers. Journal Of Lightwave Technology, 20(3), 428-440.



Asymptotic Analysis Method

* In this formalism, an arbitrary part of the fiber (core, for example) is treated
exactly (full analytical solution), and the other part is approximate in the

Cladding Region

Core Region ,

asymptotic limit.
o | A
nth cladding

1
v ]
core 2nd coreNth corei1st claddin

pair

2 2nd cladding
air pair

layer  layer layer !

 Similarly, this approach divided to sub-methods, that o o
differ by the part that calculate exactly and the part ,L%%

that is approximate. nt, i

_ . N 5

* We will concentrate on the approach presented in the b :
Ry P,

article — “Asymptotic Matrix Theory of Bragg Fibers”

* |n this article, both the core and cladding are made from number of layers, such
that the core is treated exactly, and the cladding are treated at the asymptotic

limit.

16
Xu, Y., Ouyang, G., Lee, R., & Yariv, A. (2002). Asymptotic matrix theory of Bragg fibers. Journal Of Lightwave Technology, 20(3), 428-440.



Asymptotic Analysis — Why?

* For a planar air core Bragg waveguide the eigen solution that decays in the
cladding structure can be found according to the Bloch theorem.

* For a cylindrically symmetric Bragg fiber, which is, strictly speaking, not periodic
and for which the Bloch theorem does not apply, we cannot single out an eigen
solution that decays in the fiber cladding layers.

Find the field Calculate the Find parameters
through the periodic media for guiding modes,
solution of the solution using using the

wave equation transfer matrix dispersion relation

Require Bloch
Theorem

* The problem was solved by using the asymptotic analysis, which enable us to find
well approximate solution for the Bragg fiber.

17



Low Index Cladding

ORI

Asymptotic Analysis — How? g%}

Low Inde* ;;?g%mﬁ& ‘
* Exact Analytical solution is highly complex path, which slow down our ability Figh Index Cladding

to run fast and meaningful simulation or development. e

—,

* The main key for using asymptotic is that in the asymptotic limit, the exact solutions of Maxwell
equations, which take the form of Bessel functions, can be approximated as:

e—ikr/\/F or eikr/\/?

* And as we recall, in this form the solutions in Bragg fiber cladding resemble those in planar Bragg
waveguides and eigen solutions in the fiber claddings can be similarly found — by comparison
between the solution of the core (Bessel) and the cladding (Asymptotic) at the interface.

* NOTICE: One of the main goals of this article, compare to early articles, is to extend the analysis

of the asymptotic formalism, in which the first several dielectric layers are treated exactly. The
advantage is that we can choose the accuracy we want to get.

Xu, Y., Ouyang, G., Lee, R., & Yariv, A. (2002). Asymptotic matrix theory of Bragg fibers. Journal Of Lightwave Technology, 20(3), 428-440.



d Core Region Cladding Region

st core Zuld coreNth corcfllst cladding 2nd cladding nth cladding
ver layer laye pair
a'."‘ 17; layer _pai par

Solution in the Core Region

* The fiber core region consists of the first N concentric dielectric

layers, which includes the center low index core - nl,.

The refractive index and thickness of layers in the core region can

. : i i
be chosen arbitrarily - ng,, Lz,

p is the distance from the center of the fiber:
Core: pL,, wheni=123,.., N
Cladding:pél, wheni =1,2,3,...,N

As before the wave propagate in the z direction, as slowly changing function of time:

]I)(rr 9; Z, t) = Ip(r, Q)ei(BZ—wt)

Where 1 can be every field of E, /- /g o1 Hy /9.

19
Xu, Y., Ouyang, G., Lee, R., & Yariv, A. (2002). Asymptotic matrix theory of Bragg fibers. Journal Of Lightwave Technology, 20(3), 428-440.



d Core Region Cladding Region

Lst core 2nd coreNth corcflist cladding 2nd cladding nth cladding
layer layer layer pair
J < d 1 -

| / —

Solution in the Core Region

* The core is identical to conventional fiber (waveguide), so the
transverse fields can be represented by E, and H,:

] 0 9,
g =P (_E+%_HZ)

(%)nz—ﬁz or % B rdf
i Wiy 0 0 )
Ey = _ 2 g, —E
o ((;)—zz)nz—/F( B or % rae*
by i (6 wegn? 0 >
r (Cg—zz)nz—ﬁz ar Z B rao ’
B ip wegn? 0 0
c

* Where n is the index of refraction of the medium,  is the propagation constant, w is the angular
frequency, and €y & g are the permittivity and permeability of the free space, respectively.

20



d Core Region Cladding Region

Lst core 2nd coreNth corcflist cladding 2nd cladding nth cladding
ayer layer layer
I\ ',/ 1

Solution in the Core Region

Due to the cylindrical symmetry of Bragg fibers, we can take the
azimuthal dependence of the field components as cos(16)

For each [, the general solutions for E, and H, (as we learn in

class) are the superposition of the Bessel functions —
either [ J;(x) & Y;(x) | or [[;(x) & K;(x)] .

In the core medium - the solutions are given by [ J;(x) & Y;(x) ], due to the real value of
2
k = ((2—2> n? — 2

* Now we can write the solution of the transverse fields as a matrix using the Bessel functions

21
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Core Region

Cladding Region

Solution in the Core Region

We get:

1st core 2nd coreNth corefll st ¢ lqddm 2nd cladding nth cladding
la\er layer l.ner R :

When the matrix M is defined by:

]l(k(i:or) Yl(kgor) 0

.82 N
weo(Neo) /1 weg(ngo)
weoleo) )y 1y @eolnco) oy J(kior)

M(néo;kéo,r) — kCOB kcoB (k ) Tr
0 0 Ji(kor)

[ . [ . Wl .

—— il kot : Yi(kéor — ] (kéor
) er) )

;N2
Where: A;, B;, C; and D; are constant within the ith layer ; and ki, = \/(ncT"w) — p?
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General Solution of

E, and H,
0
Yl(k or)
(kéo) r
Vi(keor)
.UO ! ]
— Y, (k¢
g Vo)
o F ")
H g P )
Ee o T
@ CE o )
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Solution in the Core Region

* As we defined at the start, the core is comprised from multiple layer,
and until now we found the fields only in the first layer

* To find the fields in the (i + 1)th layer, we apply the continuous
conditions at the interface between 2 layers at r = p;, :

Core Region

Cladding Region

Lst core 2nd coreNth corefli st cladding 2nd cladding

layer laver
',/ “

nth cladding
pair

AT A1

i i i Bi — i+1 1,i+1 ,i+1 Bi+1

M(nCO' kCOi pCO) Ci - M(nco ) kco ;pco Ci+1

| D; | 1Dj41q.
A1 A}
B; . . : - .| B;
o = Mt kgt pis )] M(nko, ko, plo) |
i+1 l.
1Djy1 | D; ]

N ~ J

T; - Transfer Matrix

* NOTICE: In the first core layer, the coefficients B; and D, are zero, because Y;(x) is infiniteat x = 0

23




) Core Region Cladding Region

id coreNth cordli st cladding 2nd cladding nth cladding
air palr

Solution in the Cladding Region ok

CCC

* In the cladding region, we will utilize the asymptotic approximation. L -
Ro P RLS

* The cladding consist of two types of alternating dielectric layers:
* Type 1: refractive index n.; and thickness I}

* Type 2: refractive index n% and thickness [

* As we discussed earlier, the asymptotic approximation relate the Bessel function to exponent function, as
follow:

](x)~%cos(x —-b) ; Y(x)~\%sin(x —b)

Y(a(x—B))=A-J(alx—B))+B-Y(alx — B)) =[Ae®*~F) 4 Be~te*=A) | /\/ax

* Meaning, that the fields that in an exact calculation equal to superposition of Bessel function can be
approximate to superposition of [e“, e‘l]

24



As x =0, J(x) with n 2 0 is finite. All others are infinite at the origin,
Asymptotic forms of the solutions as x — o are

J(x) ~ im:u:a.. (x _IF _:-_r)

¥ (x})~ ~—2-—sin (x L E)

"_i_' -
H{V(x) ~ \/E exp i(x - E; - g)]

Hf,z‘(x)n-\/f;exp —i(x—n;—g)]

gy, Y., HY, and H? all obey the same recursion relations [(7-52) through”
{7-55)). Some functions related to Bessel functions are listed below.

(7-72)

De Heer, J. (1965). Mathematical Methods of Physics. By Jon Mathews and Robert L. Walker. Inorganic Chemistry, 4(1), 134.



) Core Region @ Cladding Region
[ ] [ ] [ ] L] 1 .
Solution in the Cladding Region
- - A D
§*91 e 2 ¢
* We found that the exact solution and the approximated form of E,, is: Léé
E,=4A;-J,(kir) + B; - Y (kL) L,
( . .
1 (anelkgl(r_p?l) + bne_lkgl(r_p?l)) p?l <r< p?l + lgl

klr

T

Ez:<

.2 (. T 2 (AT
(e ¥r=8) 1 e ®00)) <<t 413
kZr

=

\

* Its important to note, that for this approximation to work, r must be large enough.

* This is one of the main advantage to use multiple layers as the core — we can choose to calculate as many
layer as needed of the core as exact, and when we far enough from the axis, we can use the approximations.

» Same go for H, (with ¢, ¢c,,, d,, and d)).

* With E, & H, we can calculate all the other field as before.
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) Core Region Cladding Region
Solution in the Claddin g Region
* To summarized our solution for the fields so far: %

a : ; ’
E, = fTM (aneikgl(r_pgl) + bne_ikgl(r_p?l)) Pf Peo P\: ot
1
kor
a)eo(nél)z fTM il n 1 n
Hy = — a elkcl(r_pcl) —b e_lkcl(r_pcl)
0 k1 n n
) cl /kéllr
Pl <r<pa+ly s f
H, = JTE (cneikgl(r_p?Z) + dne_ikgl(r_p?l))
1
kor
w . .
g = _CR JTE (L ikd(rph) _ g ik (r-pl)
0 n n

— )

cl ’kglr
\

_ frm ' ik?l(r—p’?l) =ik (r=p'l
E; ane + bje
/kczlr
we (n2 )2 f 1.2 m 1.2 m

Hy = — 0\"*cl ™ (a,’,,_elkd(r_p Cl) _ brlle—lkcl(r—p Cl))

- 2
kcl / 2
m m 2 kclr
Pl <r<p, +1g A

H, = fre (C;leikgz(r—r’”?z) + d;le—ikgz(r—/)'?l))

/k?lr

Ey = Wy fre (

— kZ
cl kgl_r
\ N

C;Leikgl(r_plgl) _ d%e—ik?l(r—p’?l))
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) Core Region Cladding Region

[ ] [ ] [ ] [ ]
1st core 2nd coreNth cordli st cladding 2nd cladding nth cladding
1011 11N 11 1011 i e B
‘e ok E . B
== = 1 S BN N
N, e .
DE NG mE 0o e NG
Sl Tl i
7

oo
nt, E@j- n)
'é%‘:;;.;___
* It should be noted that the TM component (including E, and Hy) and the TE -

component (including Eg and H,) are decoupled in the asymptotic limit, with the N
TM component amplitude being fr), and the TE component amplitude being f7g.

« The solutions take form of the traveling wave (etf%) with 1/+/T - which mean that properties of the
cylindrically symmetric Bragg stacks resemble those of planar Bragg stacks.

* Hence, the fields at neighbor cladding pairs are the same except an overall amplitude change of amplitude,
which is direct consequence of Bloch theorem

* By matching fields at interfaces between dielectric layers, we can find the coefficients a,,, b,,, ¢,;, d,, in the
form of:

n .| B
[Zn] = (ATM)n 1 ™ ]

_/1TM - ATM
Cn | Bre
= (pg)™? ]
[dn] e _ATE _ ATE
y
Change of Base

Amplitude Coefficients

28



Solution in the Cladding Region

* By matching fields at interfaces between dielectric layers, we can find the
coefficients a,,, b,,, ¢, dy:

Cladding Region

. kL) + (k2)
Arg = elketler [l( d) ’ ( Cl) : sin(kgllfl) + cos(kgllgl)‘

2k ik
. ikl (kgl)z - (kgl)z . 272
BTE =le clicl Zkg:lkgl Sln(kcllcl)
WE! ("21)4(k11)2 + ("11)4(k21)2
N . Uf‘c c C C . 212 272
Ay = etfeler [ 2(nL) 2 (n2) 2k 2 : sm(kcllcl) + Cos(kcllcl)
(n2)" (k)" + (nd)" (k2)
) ie_ikgllgl cl cl cl cl sin(kgllgl)

2 (ngl)z (ngl)z kglkgl

Arg = Re(Arg) £ +/[Re(Arp)]? — 1
Arm = Re(Ary) + v/ [Re(Arp)]? — 1
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Solution in the Cladding Region

* The field amplitudes in type 2 layer of the nth cladding pair can be found by applying

the condition of E,, Eg, H, and Hy being continuous at v = p'l};, which gives:

an| 1 |k
br| 2. |kY

Cn
dn

i 2
1 2
1+M eikéllél
2 2k1
(ncl) cl
2
1 2
n k .01 51
_( gl)z il elkcllcl
(ncl) kcl
[ k? .
cl 141
5 (1 + T elkcilel
_1 kg kel
- 1 2
2 kcl kCl ikl
1 _k_1 e'cltcl
L cl

1\2,,2
n k .
_( ;l)z il e—lkgllgl
(ncl) kcl

2
(ngl) k?l
(”gl) 2 kgz

kz 1 1-
1 _—c e el

K2\ o
1+ —Cl> e "tcilel

001 451
_lkcllcl

1+

i Core Region

Cladding Region

—

1st core 2nd coreNth cor
yer yer layer

nth cladding
pair

* As we can see, the transfer matrix depend on the wavenumbers and the thickness of the first layer.
(the method propagate the wavefunction through the [

. in the k of the medium)

cl

and then transfer through the boundary — change



Solutions for the Guided Modes

* The guided modes in a Bragg fiber are founded by matching the exact solution in the
last core layer with the asymptotic solution in the first cladding layer at the

interface r = pN, = pk:

Ay
B
M(nlcvo: klcvo» pé\{)) CN
N
Dy

Transfer Matrix

Constants in the
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Nth layer

)

Core Region

Cladding Region

coreNth cor
l.n\,/cr 13

Ist cladding
par

ayer _pair ~_pau

nth cladding
alr

2nd cladding
B

f
M (Arm — Arm + Bry)

1 .1
kclpcl

lWEg (ngl)z frm

(ATM _ ATM _ BTM)

kgl:B kllpll
C (o
frE
——(Arg — Arg + Brg)

képé
lw
klﬂﬁo Jre (Arg — Arg — Brg)

‘! képé

\

Fields Solution at the
first cladding layer




) Core Region Cladding Region

—

st cladding 2nd cladding nth cladding
par _pair pair

Solutions for the Guided Modes

* We want to relate the coefficients of the Nth core layer, to the first core layer.

 As discussed before, in the first core layer - By = D; = 0 (because Y (x) is infinite
at x = 0). We then denote 4, as Ay and C; as Crg:

| ]l(k opco) 0 |
- weg(nl,)? l
BN 21 -~ ]l opco) k > 1 ]l(klor) A

N = Tyy o Ty [M(n2,, k2, p2 )] - coP (kzo)?p TM]
CN N-1 2 co» corFco 0 ]l (k Opco) CTE
Dy
- ; ]l( opco) ] (k p )
2
_(kéo) pgo co.[’) Pheoleo i

 We will define the full transfer matrix as combination of all the transfer matrices between each boundaries
are:

= (M2, K2y, PR )M (120, K29, p2)] ++ M (0l K, )M (), K2, p20)] =
t11 12 ti3 T4

H[M(néo,kéo,pégl)M—l(ngo,kgo,pgo)]: 1tz taz fag
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) Core Region Cladding Region

4 [
1st core 2nd coreNth cordlist cladding 2nd cladding nth cladding
O u 1 O n S O r e ul e O e S IJ},CY l.\}ﬂcr ];l_\'er pair t __pair 5 pair_
~ a8 >~ R B
— [ I % b ¢ {\'7..‘1:' ; : ]
- S - - - ——
o, e .
0 Nl N ma NG
d o

nk, %’.ga nY
* Substituting the argument into the equation, and implementing T into it, we get: L ==
pL P p\:

[ frm T

——— Ay — Arym + Bry)
1/kclpcl

| ]l(k opco) 0 _ iweo(nb)z fTM
weg(nl,)? ” kLB (Arm — Ary — Bruw)
kgoﬁ ]l OpCO) (k )2 1 ]l( Or) CATM] 7 kClpCl
0 k; Cre |l
1(kL oL ) ]l (] (O:CO) ) —fTE (Arg — Arg + Brg)
) l 1
_(kzo)zpéo fopkd) i donks) kerpe
iwpy  f:
. B" —— (Arg — Arg — Brg)
‘! kclpcl

33



) Core Region Cladding Region

[ ] [ J
1st core 2nd coreNth cordllist cladding 2nd cladding nth cladding
O 1 O n S O r e 1 e O e S h}‘yer IJ"FT ]u.‘ver - : 5o L >
u u ! g >~ E e
- = 3 e N N
- ol o - -~ L2k
N . S .
N 154 o ik T ol
% i

B --
* From the last equation, we can see that A7y, and Crg are linearly related to the *égj‘; |
field in the first cladding layer — f7)y and frg via a 4x4 transfer matrix T . S 1

* So, we have 4 equations with 4 independent variables, which is suffice to determine the propagation
constant 8 and the field distribution of all guided Bragg fiber modes

e For simplification we introduce 8 new parameters:

lwig
ke B
. 12
LWE (Tlcl)

ke

e Where t are the elements in the transfer matrix T.

Q%E = tj3(Arg — Arg + Brg) — tis(Arg —Arg —Brg) [/ j=1,..,4

Q%M = tjy(Ary — Arm + Bry) — tip(Ary —Army —Brm)  / j=1,..,4
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Y Core Region Cladding Reqinn

. L]
1st core 2nd coreNth cordllist cladding 2nd cladding nth cladding
layer layer  layer par T £
‘W o W B
N . e - . -
i c B ]

lo M looJ
nl, El%é n)
%:;1 -
* These parameters will allow us to rewrite and split the previous equation between Léﬁ;

the last core layer and the first cladding layer, to get: AU

]l(k opco) 0 A
wep(ngo)? 1 1 l ) : TM] [gTM gTE] fTM]
kéoﬁ Ji(kzoPeo) k 0)2 1 Ji(kzor) Cre ’kél oL gTM gTE fre
- 0 ]l(k opco)

(I ) |- C’qTM gTM gTE frm
, ]l opco ]l opco CTE f

2 9tm 97 TE
_(kEO) Pco kéO'B ,/ cPel e Ire

fru (Arm — Arm + Br)
\ kiiog
Jilk&opso) 0 iweg(nk)’
weo(ngo)” %ﬁ—’"(lm — Ary — Brag)
kcloﬁ ]l L‘D.D ) (kl )2 ]_ jl(kcor) ¢l kélpgl
=T
0 kl : [ ¢ ]
il ol w;{g( ,01 )1 " fre (Arg — Arg + Brg)
Jikcopco)  ——Ji (ki pl, kLpl
(kco) Péo keoB ctPcl
# Iai,uo fre (Arg — Arg — Brg)
kcIB kl 1
ctPet




) Core Region Cladding Region

Solutions for the Guided Modes S =T

* We will focus on the TE and TM modes — where [ = 0.

* The matrix M(néo, kL., r) become block diagonalized to a two 2x2 matrices.

]l(k(l:‘or) Yl(ké.or) 0 0
Y i \2
o fealne) iy esolie) gy 0
M(néo:kéo, T) = kCOﬁ kcoﬁ : .
0 0 ]l(kéor) Yl(kéor)
WHy Wl 0
0 0 - (kL — Y/ (ki
| gt eeor) g g i (ko)

* As aresult, the transfer matrix T is also block diagonalized:

T =

* And the part of the new parameters grg, 7y equal zero as well

Iin=9tm =97e =975 =0
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Y Core Region Cladding Region

[ ] [ ]
1st core 2nd coreNth cordli st cladding 2nd cladding nth cladding
O 1 O n S O r e 1 e O e S h}‘yer ]J}Fr ]u.‘ver - : = L S

u u ' ~ [

- — 0 v bl ¢! e

- i e - - - [ -
A & N “‘“. 2 {t o
i 0 i
he

- --
* By the definition of TM mode, the H, field much remain zero in the entire Bragg *gﬁ‘* |
fiber, which demand: ol AR

Cre=0,frg=0

* Using all this conditions the first split equation, we can get:

]l(k opco) A f
ey L | Lo )= /*BM ;%“ »
kgoﬁ I\"*coFco (k )2 1 I\*co 1.1 ™

-

WEy (n%o)zf(’) (kgopgo) _ H%M
kgolg ]0 (kgopgo) g’}"M

» After we specified the fiber parameters and chose the frequency w, the propagation constants of the TM
modes can be found by solving for 5.

1
g
Ary = L frm
]O(k opco) kclpcl

37



Y Core ch@pq Cladding Reqion

[ ] [ J
st core 2nd coreNth cordllist cladding 2nd cladding nthe l 1dding
olutuons 10r c ul1dace odaces 'w e E - B
— — o < ’ “—‘ u ,‘_
- SARl e - = = -
co : co i 1 : n; : LY 1
K

» After we found 8, we can go back to the first split equation and find Ay,

E— ]l(k opco) 0 c/l 1
a)Eo(nco)Z 1 .1 l 1 CTM [gTM ggE] ];'TM]
—J(k — i (k

kLB Ji(kcopco) (kgo)ngo]l( coT) TE ’kgl pL, gTM 9TE TE
gTM
Ary = frm

]0 (k opco) kclpcl

Important Note:
This result relates the mode amplitude A ), in the first core layer
to fry, which determines the fields within the entire fiber cladding region
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) Core Region Cladding Region

[ ] [ J
1st core 2nd coreNth cordlli st cladding 2nd cladding nth cladding
O 1 O n S O r e 1 e O e S F IJ"FT ]u.‘ver - - = L y
u u t B N — 1
= = | y B N 403
i ! NG - -~ e
. .
0 1} 15 ¢ s i <l
) 7

%

<0 _ I:‘J' 2
B --
* For TE modes, we can get similar solution using the same method with A4y = 0: *égj‘;
e =

* To find the propagation constant £:

WlHo ](’)(kgopgo) _ g;}"E
kgoﬁfo(kgopgo) Q%E

* And the relation between Cyr and f7f are:

ITE
Crg = frEe
]0 (kgopgo) kglpgl

* To complete the fields coefficients at the core, we can choose the normalization factor of the guided mode
suchas Arpyy=1orCrg=1.

e At this point, we have all the information needed for finding the fields in the core and cladding regions.
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Core and Cladding fields solutions

* Now we have a full process to find the variables and the fields of the Bragg fiber.

Find the Calculate the Define the Find the Applying the Calculate the
asymptotic Fields £ & H coefficients of transfer matrix propagation of Fields E & H
approximation for all the fiber the first core T using the field o for all the fiber
coefficients cladding layers layer M- M coefficients o core layers
(A or Crg) using transfer | ©

matrix T

Cladding

00

=
o
o
e
O

an: bnr CTU dn

>

4, Core Region ,_ Cladding Region

slx core 2ud core Nlh core m cl 1ddmg 2nd c]addmg nth cladding
ayer  layer pair

1 42 N_pn! ! 2 A2 n M
pco pco pco—pcl pcl pcl pcl pcl pcl
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Radiation Loss

* For an air core Bragg fiber, the propagation loss is the sum of 2 terms:
* Loss through the finite number of cladding

* Absorption loss due to the cladding materials (Not consider here)

* The radiation loss depends mostly on the index contrast of the cladding media and the number of cladding
pairs.

* We will use the asymptotic theory to estimate the number of cladding pairs needed to reduce the radiation
loss below 0.2 dB/km

* To simplify the calculation, we using Bragg fiber with one air core layer, bounded by N pairs of cladding
layers.

N Bragg Cladding Pairs N Bragg Cladding Pairs

—— =t EL — =
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N Bra, (IH g Pairs

Radiation Loss [--s»---jjj N

* As we develop before, we want to calculate the fields of both core and cladding.

* Because we have only 1 layer in the core, the transfer matrix T will be an identity matrix.

* Inturn, the g parameters become:
975 = Arg — Arg + Brg
4 la):uo
975 = ——— (Arg — Arg — Brg)
1 _
9tm = Arm — Aty + Bry

2
i(l)EO(nll)
9im = — 1 . tio(Ary — Aty — Bry)
kcl:B

* Considering first the TE mode, the fields in the core are:
H,(r) = CrgJo(kior)

wu
Eg = k10 Crelo (ke or)
H P —C !
T k1 reJo(kcoT)
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Radiation Loss

* From these expressions for Eg and H,., we find the power flux along the direction

Z in the low index core:

T[w‘uoﬁ Pgo

PTE = |Crp|?
Z TE (kgl)z 0

Uo(keor)]rdr

Hz (T) = CTEJ(O (kéor)
Wiy

EB =1 kl CTEja(kgor)
cl

B ,
H‘r =1 k_l lc,']“E)’l] (k:clo ?“)
cl

* The fields at the cladding (asymptotic solutions) consist of 2 components: outgoing wave (cp) and incoming

wave (dy).

* The radiation field outside N layers Bragg fiber, can be well approximate by calculate only the outgoing

component of the fields of the N + 1 layer (dy; = 0). The fields at the N + 1 cladding layer:

— fTE

(CN+13
1
/kclr

who fre ikl (r—pN+1
EQ = (CN+1€lkCl(r Pcl )

= kl
cl ’kglr

H,
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Radiation Loss

Using the last equation, and taking dy ;1 = 0: we can calculate the radial flux:

_ frE ikl (r—pN+t1) | _ WhHo frE ikl (r—pN+1
H, = Cn+1€" alr=pa™) ; b = kll Cn+1€ el(r=pei”")
/ 1 c / 1
kClr kClT
* Hence, the radial flux is:
TWlg
TE _ 2 2
B"=— fre(cn41)°dz
(kg)?
cl

For TE modes propagating along the direction of the Bragg fiber, with the presence of radiation loss, the
optical power decays as exp(—agz), where arg is the radial loss constant.

From the definition of P/£ and P'%, we can calculate a7y as:

PTE 1 (kL1 \°
“TE = pTEq, — B\ KL

cl

2

|A |2N - UO(kgong)]zkglpgl
TE

1
fopco rdr [J (k1 1)]?

Brg
Arg — Arg + Brg

44



N Bragg Cladding Pairs

Radiation Loss

* For TM mode we can follow the same procedure and get:

2 2
L A (nizk%o) Bru o Uo(klopdo)Pkivpy
™M PZTMdZ ,B Tl%okgl ATM - ATM —+ BTM ™ fopgo rdr [](I) (kg_or)]z

* In order to have a meaningful meaning and feeling for the radiation loss (order of magnitude), we will use
the following assumption, to simplify our result:

1. Define new parameter - x = k1, pl,.

2. For Bessel function, we can use - Jo(x) = —J; (x).
For order-of-magnitude estimate, we will choose x = 3.8317 (first zero point of /; (x))

3. For Bessel function: fox du ul[J;(w)]? = x2[J,(x)]?/2

* The last component in the right part of the equation become:

Uo(kgopcl'o)]zkglpgl — )l fl []O(x)]z

[Poarrlulonl? oy duw [T

~ 0.522k} kL

x=3.8317
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N Bragg Cladding Pairs

Radiation Loss

* From the definition of A;¢, A7y, Bre, Bry, Arg, A7y We can see that they have

the same order of magnitude. Therefore, we can take the following arguments to be equal 1:

BTE BTM

~1 ; ~ 1

Arg — Arg + Brg - " Aty —Arym + Bru

e Combining this approximations, we can write:

ng = 0.522 8015 o
nll ? kgo)3
= 0.522| = y——
onw = 0522 J5) G tane

* If we take some number in:
nl, =1 (air) ; 2 =2nc/w = 1.55um

Assuming: B =k}, = w/N2c ; kY =nLw/c
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N Bragg

Cladding Pairs

Radiation Loss "

* The radiation loss constants for TE and TM mode (in dB/km):

1
aTE(dB/km) =46 - 109_1 |/1TE|2N

cl

aTM(dB/km) =46 - 109 . nglllTM|2N
* The values of A7z and A7y, have complicated dependence on B,nl;, 11, nZ and I3,

* However, when the cladding layers form quarter wave stack (meaning k1%, = k%1% = m/2), such that light
is optimally confined, the expressions for |A;z| and |A7,,| take simpler forms:

k2 kL
Apg] = min (——)
kcl kcl

2 2
2 1 1 2
|/1 I — min <ncl> kcl <ncl> kcl
TMI| — 1 2’ 2 1
ncl kcl ng kcl
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Results — Number of Layers -

* Using the arguments until now, we can calculate the number of layers needed in
the cladding to achieve loss equal or less than 0.2dB /km.

* We choose cladding layer 2, to be the low index medium with ngl = 1.5 (silica glass for example)

* Forthisindex, for 0 < f < w/c, the minimum value of A are:

Argl = \/[(nil)z—l]/[(nél)z—l] ;1 Arml = ngl/ngl

* Substituting this value into a7g,ry we find that the minimum number of Bragg layers pairs required to
achieve 0.2dB /km is:

B 23.9 — In(n};)
 In[(nf)? — 1] = In[(n2)? — 1]

_ 239+In(ng)
™ 2[In(n!) — In(n2)]

NTE
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Results — Number of Layers

« An = n}; — n? - index contrast

An <001 — N>1000
For less than

0.2dB/km
forboth TE & TM

0.1<An<1 - N<200

1<M<3 - 12<N<25

* In the asymptotic limit, the mixed modes (I # 0) in the cladding
structure can always be classified into TE and TM components.

* Therefore, their radiation loss is determined by the TM
component, because TM component is less confined and suffers
more radiation loss compared with TE component, as can be
seen from the figure.

* NOTICE: We used the smallest possible values of Arg
corresponding to min. number of Bragg pairs for 0.2dB /km loss

* Better estimation requires values of 8, n_;, IX, n%;, [% for exact
calculation of |/1TE/TM| and arg /Ty
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Results — Comparison to FDTD

We will compare our method to a well-known method called FDTD (Finite Difference Time-Domain)

We will compare the dispersion properties of the Bragg fiber — with 2 graphs:

* Nerr(= Bc/w) vs w[2mc/A]

* w[2mc/A] vs B[2m/A]

The Bragg fiber will be comprised from:
e Cladding: n}, = 4.6,1}, = 0.25A , n% = 15,13 = 0.75A \\ where A = [}, + [}

* Core: cosist from 5 layers:nl, =1, pl, = 1A

n, =nt, =46, n3,=n2,=15; 12 =14 =0.25A ,13, =12, = 0.75A
For the FDTD method we will choose A = 24 (number of cells for calculation).

For index contrast we have chosen, 10 cladding pairs are enough to reduce the radiation loss to
approximately 0.2 dB/km (as shown before). We will use 3 cladding pairs (+ 5 core layers).

Xu, Y., Ouyang, G., Lee, R., & Yariv, A. (2002). Asymptotic matrix theory of Bragg fibers. Journal Of Lightwave Technology, 20(3), 428-440.



Results — Comparison to FDTD

* Both the asymptotic analysis and FDTD calculation :
show that the B.rag.g fiber s-upports a guided 0.6p /},/—/
mode propagating in the air core. 04} LT o s
c” //V — Asymptotic
* The results shown for [ = 0, meaning the 0.2} 7 ; < @ FDTD
azimuthal dependence of the mode is cos(8) or . g : , :
W (2nC/A)
* The method agreed well with each other for the (a)
dispersion behavior. 0af - ; — -
= = Asymptotic Y
. . . Sooof | © FDTD | i
* The main source for the small difference is the : < ? A
numerical error in the finite difference time 3028} /u/
. . . . . ./-'
domain algorithm, which can be improve using 0.27§. " ; :
more calculation cells. 0 0.05 0.1 0.15 0.2
B (27/A)
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Results — Comparison to FDTD

e Howisn,rr is smaller than 1?

* [ is the imaginary part of the propagation constant, which effect on the . , _ :
0.6} o
phase of the wave. e
:-}‘_‘/.
D4t . /(“// s siionintoliseRrendiossisssss 3
e The relation between them is: c o ik ——  Asymptotic
0.2 - B - ® FDTD
2T }‘,,-
—_ _— 0__.. i i 1 M
B =nerr— 0.27 0.28 0.29 0.3
W (2nC/A)
* In conventional fibers, because we leaning on total internal reflection (a)
(TIR) mechanism, the value of n. ¢ will always lay in: oofT— A; — T ’:_J/-v?j
Ncladding < Neff < Ncore Zooob..| FDYer | /C/
because f must comply the condition of the critical angle B = y o
* In our method, where the TIR is no longer an issue, we can get lower 0.278 i e
value of 8 0 0.05 0.1 0.15 0.2
B (2n/A)
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Results — Comparison to FDTD

The distribution of the field H, obtained from the calculation, is shown
in the figure. v -

* The frequency and propagation constant of the mode are
w = 0.291(2nc/A) and B = 0.143(21/A) respectively.

* We can see that a guided mode has an azimuthal number of [ = 1.

* Most of the field contained within the air core and the first cladding
layer.

* Because we used a small number of layers, a radiation field outside of ==
the Bragg fiber has been developed. B, N e o
o .
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Results — Number of Core Layers

A main advantage of this asymptotic analysis is that the result can be
arbitrarily precise by incorporating more and more layers into the core.

* The asymptotic results obtained using an inner core region consist of N 10° - , :
. . . . ; i i : = 1 Layer
dielectric layers, should converge as a function of N to the exact solution. » - == 3 Layers
1071 == 5Layers |
* To show that behavior, we choose a core with 7 layers and calculate its s R s e A 2
effectivce index n),, as base. S0 P '
Then we compare the result to core with 1/3/5 layers. Where An,¢ ¢ = o s T ' et
defined as nt,, —n’,|. i i SFCELnEn:
| eff 6ff| Wy Sh e
10_l -.."'v . "“.'.‘i‘:
* Results: § i R
10_‘;’ 1 A = > ! N i L L
+ At 1 layer, the difference go up to 0.2, which is quite significant. 0.27 0.275 0.28 %25]3% 029 0.295 0.3
L)) T !

* Addition of one more pair (3 layers combined), reduce the difference to 0.02

* With 5 layers, it go down to 0.001 .
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Results — Field Distribution comparison

* The field itself can be calculated using the steps we introduced:

Find the Calculate the Define the Find the Applying the Calculate the
asymptotic o Fields £ & H coefficients of transfer matrix propagation of Fields £ & H
approximation § € for all the fiber the first core T using the field for all the fiber

coefficients cladding layers layer M—t-M coefficients core layers

(Arp 01 Crg) using transfer
matrix T

< >

Cladding

* We apply this algorithm to study the field distribution of the guided Bragg fiber mode at w = 0.286(2mc/A),
using a core region of five layers, we find the propagation constant to be f = 0.128(2m/A).

* We compare this calculation to the “exact solution” — meaning calculation using the exact calculation of the core
to all the cladding layers.
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Results — Field Distribution comparison

L — 7 ] ¥ =
' ®  Exact
—— Asymptotic

e As anticipated, within the core region, the exact solution and the

=
. . : 8 0 .
asymptotic solution are the same (same calculation). il :
-U.9 .
-qL — L o
. . . . g 2 3 4 5 6 7
* The accuracy of the approximation is relevant only at the cladding area, T (A
. . 10 i
and as we can see, is very small for all the fields. : | 5 Eudt
;:‘ 5 : L— Asymptotic
s .
* Most of the field is contained in the core and converge to 0 at the W0 .
cladding layers. o—=o 85 =2 % B A

* NOTICE: The free-space wavelength of the mode is A = 3.5A, and the

core radius equal to A . Their ratio is 0.286, which demonstrate great & o ; o B
. . . s ' —  Asv
results with small air core radius. i : | 2 e e
Y% 2 & .4 B & 7
A
27 S — —
4
©
i . Exact
T~ s e ~/l\sym[:tot:c
% 1 p) a 4 5 6 7
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